ENHANCING INDOOR LOCALIZATION ESTIMATION USING RSS SIMILARITY-BASED K-NEAREST NEIGHBORS

Author(s): Benyamain Yacoob, Daniel Marku Advisor(s): Dr. Mina Maleki, Dr. Shadi Banitaan University of Detroit Mercy College of Engineering and Science (ECECS)

workshops ACKIM & AAIP

Overview

- Introduction
- Related Work
- Dataset
- Methodology
- Results
- Conclusion

workshops ACKIM & AAIP

Introduction

- Indoor positioning is crucial for accurate location information in various indoor environments.
- Unlike outdoor GPS, indoor positioning faces challenges due to weak signals indoors.
- Fingerprint-based methods, using Wi-Fi signals, create unique location fingerprints for positioning.
- Machine learning (ML) algorithms like k-nearest neighbors (k-NN) and random forest enhance indoor positioning accuracy.

- Existing research addresses GPS software limitations in indoor environments for localization accuracy.
- Various approaches like fingerprinting-based methods and neural networks enhance indoor localization.
- Studies explore k-NN algorithm and custom distance functions to improve indoor positioning.
- Can we create a framework that inherently considers received signal strength (RSS) data and performs well consistently?

- Data collected from engineering building at University of Detroit Mercy across three floors.
- Fingerprints strategically distributed across entire floor area for comprehensive coverage.
- Encompasses diverse settings from small to large classrooms on multiple floors.
- The scope of this research did not address multifloor prediction.

2024 6th Asia Conference on Machine Learning and Computing

workshops ACKIM & AAIP

Dataset

Bangkok, Thailand + July 26-28, 2024

2024 6th Asia Conference on Machine Learning and Computing

workshops ACKIM & AAIP

Dataset

Table I: AP Information.

xCoord	yCoord	MAC	roomNum
2806	1494	XX:XX:XX :XX:XX:X X	441
2352	1455	XX:XX:XX :XX:XX:X X	441
1959	632	XX:XX:XX :XX:XX:X X	437
2813	873	XX:XX:XX :XX:XX:X X	437

Table II: RSS's mapped to identified APs.

xCoord	yCoord	Floor	AP1	AP2	AP3	AP#
413	94	2	-81	-80	-39	
531	93	2	-100	-83	-41	
642	92	2	-85	-86	-46	

- The indoor localization framework consists of offline and online phases for accuracy.
- In the offline phase, data such as access point (AP) positions and RSS levels are collected.
- The online phase involves collecting live Wi-Fi scans for user location estimation.
- The *k*-NN model is utilized to output an estimated user location.

2024 6th Asia Conference on Machine Learning and Computing

workshops ACKIM & AAIP

Methodology

workshops ACKIM & AAIP

Methodology

Algorithm 1 RSS Similarity				
	Require: Two arrays of RSS values from Wi-Fi APs: u and			
<i>U</i> : test point.	r_{j}			
R: training fingerprint reference	Ensure: Weighted similarity score between u and r_j			
• <i>Ny</i> . training ingerprint reference	1: Calculate percentile: $per = percentiles((u \cup$			
point.	$r_j), [96, 98, 99.5, 100])$			
Percentile	2: Initialize empty array: $rss_weights =$			
	zeros(dimensions(u))			
 Weighting scheme. 	3: for $i \in 0 \dots dimensions(u) - 1$ do			
	4: if $per_2 \le u_i \le per_3$ or $per_2 \le r_{ji} \le per_3$ then			
	5: $rss_weights_i = 1$			
	6: else if $per_1 \leq u_i < per_2$ or $per_1 \leq r_{ji} < per_2$ then			
	7: $rss_weights_i = 0.75$			
	8: else il $per_0 \leq u_i < per_1$ or $per_0 \leq r_{ji} < per_1$ then			
	9: $rss_weights_i = 0.30$			
	10: else 11 : mag avaights $= 0.15$			
	11: $Tss_weights_i = 0.15$			
	12. end for			
	13. Calculate absolute difference: rss_similarity = $ u - r $			
	14. Calculate absolute difference. $rss_stitutarity = a - r_j $			
	15: Calculate weighted similarity:			
	weighted similarity = $\sum_{i=1}^{dim(u)} (rss similarity)$			
	rss weights)			
	16: return weighted_similarity			

- RSS similarity outperformed cosine similarity and Euclidean distance functions across multiple floors.
- Weighted distances with k = 5 neighbors.
- Results show RSS similarity consistently excelled in R² values and MAE.

workshops ACKIM & AAIP

Results

Table III: Comparison of *k*-NN regressor using different distance functions for different floors.

Floor	F1		F2		F3	
Distance Function	R ²	MAE	R ²	MAE	R ²	MAE
RSS Similarity	0.94	64	0.98	55	0.86	53
Cosine	0.93	73	0.97	61	0.85	54
Euclidean	0.93	75	0.97	61	0.84	57

workshops ACKIM & AAIP

Results

Bangkok, Thailand + July 26-28, 2024

nn-3

🕂 Test (Actual)

Bangkok, Thailand + July 26-28, 2024

- Achieved enhancement in R² score and reduction in distance errors.
- Effectiveness of the proposed approach to fundamentally consider the best fingerprint compared to traditional methods.
- Future work includes strategies to mitigate noisy RSS data and explore alternative algorithms.

workshops ACKIM & AAIP

Thank you for your time and attention!

