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ABSTRACT
The rapid growth of indoor positioning is revolutionizing our under-
standing of entity locations within indoor spaces. The fingerprint-
based indoor localization method using Wi-Fi access points (APs)
stands out for its minimal hardware requirements, making it one
of the promising techniques in this domain. The k-nearest neigh-
bors (k-NN) algorithm, a common machine learning (ML) approach,
provides location estimations by pinpointing the k neighbors with
the most similar representation values. However, conventional dis-
tance functions utilized in k-NN, including Euclidean distance and
cosine similarity, prove insufficient in accurately identifying near-
est neighbors based on the meaningful interpretation of received
signals from APs. Thus, in this research, we propose a new dis-
tance function based on received signal strength (RSS) similarity
that can be employed in tandem with k-NN to find the optimal
nearest neighbors for real-time localization on a more consistent
basis when compared to other distance functions. The experimental
results of the collected dataset demonstrated a 1 to 3% improvement
in the coefficient of determination (R2) score and a reduction in
distance error by 6.5 to 10 inches, as determined from the mean
absolute error (MAE).
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1 INTRODUCTION
Indoor positioning has emerged as a critical technology in recent
years, playing a pivotal role in enabling a wide range of applications
that depend on accurate location information within buildings
and other indoor environments. From enhancing user navigation
and wayfinding in complex structures like airports and shopping
malls to optimizing logistics and asset management in industrial
settings such as warehouses and factories, the capability to pinpoint
locations indoors has revolutionized operational efficiency and user
experience across various domains. Unlike outdoor positioning,
which utilizes Global Positioning System (GPS) satellites, indoor
positioning faces limitations because GPS signals are often weak
or unavailable indoors due to obstruction by walls, ceilings, and
other physical structures. As a result, various indoor positioning
methods have been developed, leveraging different technologies
and techniques to determine the precise location of users or devices
within indoor spaces [10].

One of the most promising approaches to indoor positioning is
fingerprint-based methods, which rely on the unique characteristics
of wireless signals, such as Wi-Fi, Bluetooth, or radio-frequency
identification (RFID), to create a “fingerprint” of a specific location.
These methods typically involve a two-phase process: an offline
training phase, where signal measurements are collected at known
locations to create a fingerprint database, and an “online phase”,
where real-time signal measurements are compared against the
database to estimate the user’s location [1, 13, 17].

Wi-Fi-based fingerprinting has become a widely adopted and
effective approach for indoor positioning, leveraging the ubiqui-
tous presence of Wi-Fi access points (APs) in indoor environments.
By capturing the Received Signal Strength (RSS) of Wi-Fi signals
from multiple APs, a unique fingerprint can be generated for each
location within a building. This fingerprint serves as a reference
dataset, enabling the estimation of a user’s device location based
on the RSS measurements received from nearby APs. Leveraging
the connectivity of networked devices like smartphones and com-
puters, RSS levels are collected from nearby APs to create these
fingerprints. RSS fingerprinting employs machine learning (ML)
algorithms trained on these RSS measurements during an offline
phase, where a database is populated with recorded RSS levels.
This training data enables accurate positioning of network devices
within a 2-D Cartesian coordinate plane, effectively utilizing the
spatial distribution of Wi-Fi signals for indoor localization.
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In recent years, ML approaches have been increasingly applied to
improve the accuracy and robustness of indoor positioning models.
Various ML algorithms, such as k-nearest neighbors (k-NN)[4, 5, 19],
random forest (RF)[9, 15], support vector machine (SVM)[8], deep
learning (DL)[3, 6, 11, 21, 24], autoencoder[6, 11, 20, 24], and gradient
boost (GB)[6, 16, 23], have been explored to enhance the performance
of indoor positioning models.

The k-NN algorithm is one of the primary and powerful methods
for capturing indoor positioning at a high level of accuracy. The
algorithm calculates the distances between the user whose location
needs to be estimated and previously collected data points repre-
senting user locations. Subsequently, it identifies the k points with
the most similar representation values (the nearest neighbors) and
computes the average of their corresponding locations to arrive at
an estimated location. However, the most commonly used distance
functions in k-NN like Euclidean distance or cosine similarity may
not fully capture the complexities of indoor environments, where
signal strengths can vary significantly due to factors such as walls,
obstacles, and interference[10].

In this paper, we propose a customized distance function based
on RSS similarity that can be used in conjunction with the k-NN
algorithm. This distance function considers the complexities of
the signals in the indoor environment, making it a more adaptable
method to find the closest neighbors. RSS similarity finds the opti-
mal training instances by dynamically adapting to the user’s latent
representations.

The discussion in this paper will follow in the order listed as
follows. Section II reviews the ML approach using fingerprinting
methods in related work. In Section III, we cover the fingerprinting
process and the implementation of the RSS localization estimation
algorithms and our proposed distance function. Section IV com-
pares and analyzes results from each distance/similarity algorithm.
Section V concludes with remarks on our findings.

2 RELATEDWORK
Many of the problems for indoor localization using Wi-Fi APs stem
from how random AP signals can be. Therefore, much of the lit-
erature on indoor localization uses fingerprinting-based methods
to address this issue. Existing research contends with GPS soft-
ware since 68% of smartphone users have location-based services
enabled on their apps[25]. However, location-based services can
receive weak GPS signals in indoor environments, which produces
ambiguous tracking and navigation. Different approaches to track-
ing indoor occupants become preferable to GPS when localizing
at the building scale[10]. Salamah et al.[1], Khullar et al.[13], and
Roy et al.[17] operate on an approach that can be carried out offline.
Xu et al.[7] consider a signal ratio to create the Apollonius circles,
eliminating the transmission power distance parameter, as well as
the unknown attenuation factor. The technique is synchronous to
creating virtual APs and providing respectable estimations, differ-
ing from previous methods as they disregard the absolute physical
distance to locate each AP. Shu et al.[23] also address uneven fin-
gerprint density and device heterogeneity and propose gradient
fingerprinting (GIFT) that extracts binary RSS gradients from their
fingerprinting map and establishes a gradient database to minimize
any influence of how Wi-Fi signals are transmitted when looking

at a certain device. Gufran et al.[6] propose stacked autoencoder
neural networks with gradient boosting for indoor localization
(SANGRIA) that also account for device heterogeneity. However,
Njima et al.[21] provide a top-level alternative, advocating for the
results of indoor localization using weighted semi-supervised meth-
ods with a supervisedmodel that trains on a small amount of labeled
data as a way to predict emergent, pseudo-labels. Yoo et al.[22] also
adopt the idea of pseudo-labeling to compensate for the lack of
labeled data, but add a temporal relation to the unlabeled training
data that are collected as time series. Jia et al.[3] also utilized the
neural network framework approach to address the topic of indoor
localization and found that a deep neural network (DNN) can be
fed the fingerprint database to determine the structure of the DNN
and the weight of each of its neurons. Yan et al.[14] account for the
complexity of localizing estimations within indoor environments,
so their method requires location matching from a recurrent neural
network (RNN) that converts the continued signals into the contin-
ued path to form the mapping relation from signal to location. Liu et
al.[11] also consider the unstable accuracy of RSS-based localization
and suggest denoising the noisy RSS to estimate the correct RSS for
each AP. Similar to our experimental conditions, Akram et al.[2]
target indoor localization at the building level by splitting their
dataset using soft clustering, made possible with the Gaussian mix-
ture model (GMM) by taking into consideration overlapping and
non-overlapping data subsets. Arthi et al.[18] share their struggle
to find an evaluation metric that would be ideal for representing
their results. That is primarily the reason the metric they used was
the minimum mean squared error (MMSE). From their analysis,
they found that using the k-NN algorithm coupled with this metric
gave them more accurate data and their statistics were far more
interpretable than what was used before. Bi et al.[12] experiment
with evaluation metrics as well, using MAE, root mean square error
(RMSE), 50th percentile error, 75th percentile error, 95th percentile
error. Others, like Khatab et al.[24], suggest increasing the num-
ber of fingerprints to output an improved localized performance.
They saw this by gradually comparing the metrics, with each itera-
tion increasing the number of training fingerprints. Singh et al.[16]
deviate from other frameworks and introduce relational labeling
(RL) combined with an XGBoost-based ML method. Finding the
soundest method that delivers good results requires trials of ex-
perimentation, such as when Kia et al.[8] experimented with many
different ML algorithms like lasso regression (LR), ridge regression
(RR), support vector machine regression (SVR), etc. to extract the
best method. Hou and Wang[9] introduced the RF-KELM indoor
positioning algorithm, which combines random forest (RF) for fea-
ture importance evaluation and kernel extreme learning machine
(KELM) for positioning. The RF is used for AP selection, enhancing
the algorithm’s robustness to signal changes and improving com-
putational efficiency, while KELM is employed for fast and accurate
position prediction. Narasimman and Alphones[15] addressed the
issue of feature extraction before classification or regression, intro-
ducing a framework called DumbLoc. This framework utilizes RSS
values from the strongest AP signals and normalized output labels
to achieve high positioning accuracy without optimization. Some
studies explored k-NN because it is a straightforward yet powerful
ML algorithm that can be used to estimate a user’s location based on
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the characteristics of nearby fingerprints. They have also explored
custom distance functions in conjunction with the k-NN algorithm
for indoor positioning. Zhou et al.[19] proposed the Q weighted
k-NN algorithm (Q-WKNN), which utilizes base Q to transform RSS
to Q-based RSS, enhancing positioning accuracy and real-time per-
formance. Wang et al.[5] introduced a novel WKNN based on signal
similarity and spatial position, analyzing the relationship between
RSS similarity and position distance to improve the positioning
accuracy of the WKNN algorithm. Another study by Wang et al.[4]
proposed an improved Wi-Fi positioning method based on finger-
print clustering and signal-weighted Euclidean distance (SWED).
Their experiments, conducted in two experimental fields, indicated
that the proposed position label-assisted (PL-assisted) clustering
result can reflect the position distribution of reference points (RPs)
and the proposed SWED-based WKNN (SWED-WKNN) algorithm
can significantly improve the positioning accuracy compared to
traditional methods. These studies highlight the potential of cus-
tom distance functions in combination with the k-NN algorithm
to enhance indoor positioning performance. Because of this, we
propose a new customized distance function that works with k-NN
to select the optimal neighbors considering the RSS similarity.

3 INDOOR LOCALIZATIONWITH RSS-BASED
SIMILARITY METHODOLOGY

There are two phases across the indoor localization framework
as shown in Figure 1. The initial step of the framework is termed
the “offline phase” which constitutes the fingerprinting method.
Fingerprinting accrues data such as AP positions, identities of said
APs, and RSS levels to these APs from various fingerprint locations
into databases. This data is then preprocessed to train an ML model.
During the “online phase”, live Wi-Fi scans are taken, collecting
RSS-based fingerprints as test data for our k-NN model to output
an estimated user location.

Figure 1: Indoor localization framework

3.1 Offline Phase
The target of the “offline phase” is to collect fingerprints and AP data
to initialize the model. This is conducted via an internal application
on a smartphone device. The provided data involves all available
APs, their MAC addresses, and locations of these APs within our
area of interest; all of which are then filtered and stored in a database
as shown in Table 1.

Fingerprints collect RSS values emitted by all reachable AP Wi-
Fi signals from the tagged locations. Once an adequate number of
fingerprints are amassed, detected APs are localized using their RSS
signals in conjunction with the (𝑥,𝑦) coordinates of the fingerprints
placed by the user. The data retrieved is then stored for later use
in bringing the model online and outputting an estimation on the
map representative of the user’s current location.

Table 1: AP information

xCoord yCoord MAC roomNum

2806 1494 XX:XX:XX:XX:XX:XX 441

2352 1455 XX:XX:XX:XX:XX:XX 441

1959 632 XX:XX:XX:XX:XX:XX 437

2813 873 XX:XX:XX:XX:XX:XX 437

The fingerprints in this dataset were taken in areas with high foot
traffic and within the radius of the APs. This guarantees accurnate
localization in key areas via strong RSS values. In this research, RSS
data is measured between -100 (weakest) and -30 (strongest). To
combat RSS noise, three consecutive RSS scans were taken at each
fingerprint. The strongest RSS values obtained from each AP across
all scans were stored. Some APs, however, are not reached from
certain fingerprint locations. Wang et al.[20] account for missing
RSS values in their data collection process by filling in those values
to normalize the raw RSS data. We compensate for this by declaring
every signal to an AP to be -100 unless some RSS is detected. The
fingerprints are then reformatted, which requires that each AP
found is designated a unique identifier digit (UID) to reference an
RSS value for consistency across all fingerprint records. The table
of Reformatted Fingerprint records can be seen in Table 2, which
indicates all RSS levels for each fingerprint to every APs assigned
digit. This dataset of fingerprints is then used as potential neighbors
to localize users within the k-NN algorithm.

Table 2: Fingerprint RSS’s mapped to identified APs (Refor-
matted Fingerprints)

xCoord yCoord floor AP1 AP2 AP3 AP#

413 94 2 -81 -80 -39 ...

531 93 2 -100 -83 -41 ...

642 92 2 -85 -86 -46 ...
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3.2 Online Phase
The user location is estimated in this phase where live Wi-Fi scans
are taken to collect the RSS-based fingerprints as test data. These
scans extract the relevant data and are fed into the ML model, to
output a coordinate pair (𝑥,𝑦) prediction. Using the fingerprints
collected in the “offline phase” and the live RSS signals received
in the “online phase”, a k-NN regressor algorithm was utilized to
estimate the user location within a designated indoor environment.

The k-NN algorithm uses a distance function to find the distance
of each fingerprint to the test data. These distances are sorted and
best k neighbors are selected. The estimated (𝑥,𝑦) coordinate pair
of the user’s location would be calculated as the weighted average of
the coordinates of these 𝑘 RPs, where the weights are proportional
to the distance. Distance functions used in this study are described
below:

3.2.1 Euclidean Distance Function. This is a widely used metric
for measuring the L2-norm of the difference between two represen-
tations in a multi-dimensional space. In indoor localization using
the k-NN algorithm, Euclidean distance is utilized to determine the
proximity of neighboring points based on their RSS values. The
Euclidean distance between two representations is calculated by
taking the square root of the sum of the squared differences between
corresponding RSS values from eachWi-Fi AP. Given the user’s RSS
vector: 𝑢 = (𝑢1, 𝑢2, . . . , 𝑢𝑛), where 𝑢𝑖 represents the RSS value from
the 𝑖-th AP at the user’s current location, and the RSS vector of a
reference point 𝑗 : 𝑟 𝑗 = (𝑟 𝑗1, 𝑟 𝑗2, . . . , 𝑟 𝑗𝑛), where 𝑟 𝑗𝑖 represents the
RSS value from the 𝑖-th AP at the reference point 𝑗 , the Euclidean
distance between the user’s RSS vector and the RSS vector of a
reference point 𝑗 can be calculated as:

𝑑 (𝑢, 𝑟 𝑗 ) =

√√
𝑛∑︁
𝑖=1

(𝑢𝑖 − 𝑟 𝑗𝑖 )2

=

√︃
(𝑢1 − 𝑟 𝑗1)2 + (𝑢2 − 𝑟 𝑗2)2 + · · · + (𝑢𝑛 − 𝑟 𝑗𝑛)2

(1)

3.2.2 Cosine Similarity Distance Function. Cosine similarity is an-
other popular metric used to measure the similarity between two
representations, particularly in high-dimensional spaces. Using the
k-NN algorithm, cosine similarity is applied to assess the proximity
of neighboring points based on the angle between their RSS vectors.
The cosine similarity between two representations is calculated by
taking the dot product of their RSS vectors and dividing it by the
product of the magnitudes of the vectors, as shown in Equation 2.

𝑐𝑜𝑠 (𝜃 𝑗 ) =
𝑢 · 𝑟 𝑗

| |𝑢 | | · | |𝑟 𝑗 | |
=

∑𝑛
𝑖=1 𝑢𝑖 · 𝑟 𝑗𝑖√︃∑𝑛

𝑖=1 𝑢
2
𝑖
·
√︃∑𝑛

𝑖=1 𝑟
2
𝑗𝑖

(2)

3.2.3 Proposed RSS Similarity Distance Function. Commonly used
distance functions in k-NN, such as Euclidean distance, become less
effective in capturing the intricate relationships between Access
Points (APs). This limitation is particularly pronounced in indoor
environments where AP signal strengths can vary significantly
based on the user’s location. For instance, the smallest Euclidean
distance between a test sample and a fingerprint in the training
set does not always indicate the most accurate match. In certain
scenarios, a larger Euclidean distance for a specific fingerprint can

actually better correlate with the test sample’s RSS values, under-
scoring the nuanced variability in signal strengths and emphasizing
the necessity for a more refined similarity metric like RSS similarity.

RSS similarity is crucial for determining the proximity of neigh-
boring points and plays an important role in the k-NN algorithm.
As illustrated in Algorithm 1, RSS similarity distance function is de-
signed to calculate a weighted similarity between two input vectors.
The weights are dynamically assigned based on the percentiles of
representation values in the input arrays. The weighted similarity
calculation involves taking the absolute difference between corre-
sponding representation values and summing the product of these
differences and the assigned weights. Each element (or column)
in the input vector represents the RSS value from a specific Wi-Fi
AP. This approach guarantees that higher weights are assigned
to values in the arrays with higher percentiles, emphasizing the
impact of taking the highest values on the similarity calculation. We
only consider RSS signals above the 95th percentile. RSS similarity
considers all APs and their relationship to each other, making it a
more adaptable method. It also considers the training data for each
test input of the user moving, finding the best training fingerprints
that are closest.

The pseudocode of our approach can be seen in Algorithm 1.

4 RESULTS AND DISCUSSION
In this section, we discuss our findings regarding distance function
performance determined by various evaluation metrics.

4.1 Dataset
The dataset comprises Wi-Fi scans (collected fingerprints) from the
engineering building at the University of Detroit Mercy. To ensure
the representativeness of our findings, we collected fingerprint data
across three respective floors within this building. There were 77
fingerprints conducted on the first floor, 105 on the second, and 72
on the third. Each floor exhibited varying classroom sizes, which
allowed us to capture a diverse range of environmental conditions.
Additionally, the fingerprints were strategically distributed through-
out the entire floor area, ensuring comprehensive coverage and
minimizing potential biases or blindspots. By having a dataset that
encompasses such diverse settings, from small to large classrooms
and spanning multiple floors, we aimed to create a thorough rep-
resentation of the real-world scenarios to generalize our proposed
approach.

4.2 Evaluation Metrics
To evaluate the performance of the applied model for the estimation
of the location of the user, we calculate both the mean absolute
error (MAE) and the coefficient of determination (R2), comparing
the actual location of the user with the estimated location.

The MAE is calculated as the average of the absolute differences
between the predicted and actual coordinates:

𝑀𝐴𝐸 =
1
𝑛

𝑛∑︁
𝑖=1

√︃(
𝑥𝑖est. − 𝑥𝑖act.

)2 + (
𝑦𝑖est. − 𝑦𝑖act.

)2 (3)

where (𝑥𝑖𝑎𝑐𝑡𝑢𝑎𝑙 , 𝑦𝑖𝑎𝑐𝑡𝑢𝑎𝑙 ) and (𝑥𝑖𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑
, 𝑦𝑖𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑

) indicate the
coordinates of the actual and the corresponding estimated points
for the 𝑖-th sample, and 𝑛 is the total number of samples.
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Algorithm 1 RSS Similarity
Require: Two arrays of RSS values from Wi-Fi APs: 𝑢 and 𝑟 𝑗
Ensure: Weighted similarity score between 𝑢 and 𝑟 𝑗
1: Calculate percentile: 𝑝𝑒𝑟 = percentiles((𝑢 ∪

𝑟 𝑗 ), [96, 98, 99.5, 100])
2: Initialize empty array: 𝑟𝑠𝑠_𝑤𝑒𝑖𝑔ℎ𝑡𝑠 = zeros(𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 (𝑢))
3: for 𝑖 ∈ 0 . . . 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 (𝑢) − 1 do
4: if 𝑝𝑒𝑟2 ≤ 𝑢𝑖 ≤ 𝑝𝑒𝑟3 or 𝑝𝑒𝑟2 ≤ 𝑟 𝑗𝑖 ≤ 𝑝𝑒𝑟3 then
5: 𝑟𝑠𝑠_𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝑖 = 1
6: else if 𝑝𝑒𝑟1 ≤ 𝑢𝑖 < 𝑝𝑒𝑟2 or 𝑝𝑒𝑟1 ≤ 𝑟 𝑗𝑖 < 𝑝𝑒𝑟2 then
7: 𝑟𝑠𝑠_𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝑖 = 0.75
8: else if 𝑝𝑒𝑟0 ≤ 𝑢𝑖 < 𝑝𝑒𝑟1 or 𝑝𝑒𝑟0 ≤ 𝑟 𝑗𝑖 < 𝑝𝑒𝑟1 then
9: 𝑟𝑠𝑠_𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝑖 = 0.30
10: else
11: 𝑟𝑠𝑠_𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝑖 = 0.15
12: end if
13: end for
14: Calculate absolute difference: 𝑟𝑠𝑠_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = |𝑢 − 𝑟 𝑗 |
15: Calculate weighted similarity:

𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =
∑𝑑𝑖𝑚 (𝑢 )
𝑖=0 (𝑟𝑠𝑠_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 ·𝑟𝑠𝑠_𝑤𝑒𝑖𝑔ℎ𝑡𝑠)

16: return 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦

The R2 score ranges from 0 to 1, with 1 indicating a perfect fit
and 0 indicating a model that performs no better than predicting
the mean value of the target variable(s). It is calculated as:

𝑅2 = 1 −
∑𝑛
𝑖=1

[
(𝑥𝑖est. − 𝑥𝑖act. )2 + (𝑦𝑖est. − 𝑦𝑖act. )2]∑𝑛

𝑖=1
[
(𝑥𝑖act. − 𝑥)2 + (𝑦𝑖act. − 𝑦)2] (4)

where (𝑥,𝑦) is the mean of the actual coordinate pairs. These
error metrics help assess model accuracy in estimating the user’s
location based on the RSS vectors. A lower MAE indicates that
the predicted coordinates are closer to the actual coordinates on
average and a higher R2 score suggests that the model explains
a larger proportion of the variance in the target variable (i.e., the
user’s location).

4.3 Distance Function Assessment
The performance of each k-NN distance function was examined
across multiple floors to produce definitive results. We chose a fixed
number of neighbors (k = 5) and employed weighted distances to
emphasize the importance of the most similar data points. Cosine
and Euclidean distance functions were implemented and compared
with the proposed RSS similarity distance function to show the
dynamic nature of our function. The results are shown in Table 3.

For all three floors, RSS similarity consistently outperformed
cosine similarity and Euclidean distance in terms of both R2 values
and MAE. This indicates that the custom distance metric, designed
specifically for assessing similarity between data points using the
k-NN algorithm, is better suited for the given dataset and regression
task.

Table 3: Comparison of k-NN regressor using different dis-
tance functions for different floors

Floor F1 F2 F3

Distance Function R2 MAE R2 MAE R2 MAE

RSS Similarity 0.94 64 0.98 55 0.86 53

Cosine 0.93 73 0.97 61 0.85 54

Euclidean 0.93 75 0.97 61 0.84 57

4.4 Nearest Neighbors Visual Inspection
Additional investigation was conducted to provide insight into what
neighbors were being selected by distance function. Neighbors cho-
sen are an important element of the model since they are weighted
in numerical order. The neighbors chosen by RSS similarity and
Euclidean distance were scrutinized closely as those two distance
functions generated the most consistent results across evaluation
metrics. The visual sample of the custom RSS similarity approach
against Euclidean distance for k-NN with k = 5 is shown in Figure
2. The figure shows that the nearest neighbors found by the custom
RSS similarity function are marginally more accurate than the Eu-
clidean distance function; 𝑁𝑁 − 4 in RSS similarity lies much closer
than 𝑁𝑁 − 4 in the Euclidean distance to the actual user location.
This tends to have a more accurate user location estimation by
comparing the distance of the estimated user location to the actual
user location.

5 CONCLUSION
In this study, we introduced a novel RSS similarity distance function
designed to enhance indoor localization accuracy by finding more
meaningful nearest neighbors in the k-NN algorithm. The RSS sim-
ilarity algorithm’s dynamic nature enhances its ability to capture
meaningful patterns by using dynamic weighted similarity based
on representation value percentiles. We compared our proposed
method with two commonly used and powerful distance functions,
Euclidean distance and cosine similarity.

Using Wi-Fi scans collected from the engineering building at the
University of Detroit Mercy, we validated our model’s reliability
and performance improvements, achieving a 1 to 3% enhancement
in R2 score and reducing distance errors by 6.5 to 10 inches as
measured by MAE score using the RSS similarity distance function
to find the nearest neighbors in the k-Nearest Neighbors (k-NN)
algorithm. This experimental result illustrates the effectiveness
of our approach compared to traditional methods such as cosine
similarity and Euclidean distance, highlighting its potential for
enhancing indoor localization accuracy in practical applications

Future work includes the implementation of strategies to miti-
gate RSS noise impact, exploration of alternative customized dis-
tance function algorithms, and integration of diverse datasets to
improve overall generalizability and applicability in practical indoor
positioning applications.
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Figure 2: Sample user location prediction by k = 5 neighbors
found by RSS similarity v. Euclidean distance (Floor #2)
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