
PPO vs. DDPG: A Critical Analysis of
Reinforcement Learning Performance

Benyamain Yacoob, Caitlin Snyder

Department of Electrical & Computer Engineering & Computer Science
University of Detroit Mercy
Detroit, MI, United States

{yacoobby, snydercr}@udmercy.edu

Abstract—This paper closely examines two important re-
inforcement learning methods: Proximal Policy Optimization
(PPO) and Deep Deterministic Policy Gradient (DDPG). These
methods solve different problems in training AI agents. PPO is
great for making reliable updates in various situations, while
DDPG is effective for handling tasks with continuous possible
actions. We explain how each algorithm works, its main parts,
and things to consider when using them, backing it up with
math and findings from other research. We also compare their
designs, how they work, and their performance to see when one
is better than the other. The findings show that PPO is more
stable and efficient in tasks with clear-cut choices and simulated
environments. DDPG works better in complicated situations with
continuous choices that need fine-tuned actions.

Index Terms—reinforcement learning, proximal policy opti-
mization, deep deterministic policy gradient, continuous control,
policy optimization

I. INTRODUCTION

Reinforcement learning (RL) is now a primary method for
training AI to make a series of decisions by learning from an
environment. Two algorithms, Proximal Policy Optimization
(PPO) and Deep Deterministic Policy Gradient (DDPG), are
especially good at solving specific RL problems. PPO, an on-
policy method, balances stability and performance in policy
updates, while DDPG, an off-policy approach, performs well
in continuous action spaces by combining Q-learning with pol-
icy gradients. This paper critically analyzes these algorithms,
focusing on their methodologies, practical considerations, and
comparative performance.

The goal is to clarify how PPO and DDPG function,
compare their algorithmic designs, and identify which delivers
better performance in specific contexts. The analysis draws
on foundational papers, mathematical formulations, and code
implementations to offer a thorough evaluation, advancing the
understanding of RL techniques in neural network applica-
tions.

II. PPO DESCRIPTION

A. Methodology and Key Algorithms

Proximal Policy Optimization (PPO), introduced by Schul-
man et al. [1], is an on-policy reinforcement learning algorithm
that enhances the stability of earlier policy gradient methods,
such as Trust Region Policy Optimization (TRPO). PPO

achieves this by limiting policy updates to prevent significant
deviations from the previous policy, utilizing a clipped sur-
rogate objective function. The algorithm alternates between
gathering experience through environment interactions and
optimizing this objective over multiple epochs with stochastic
gradient ascent.

The core objective in PPO-Clip is defined as:

LCLIP(θ) = Êt

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
,

(1)
where rt(θ) = πθ(at|st)

πθold (at|st) is the probability ratio, Ât is the
advantage estimate, and ϵ (typically 0.2) restricts the policy
update size. This clipping mechanism helps to maintain the
new policy close to the old one, improving training stability.

PPO also includes a value function Vϕ(s) to estimate
expected returns, optimized via:

LVF(ϕ) = Êt

[
(Vϕ(st)− R̂t)

2
]
, (2)

where R̂t represents rewards-to-go. The combined loss, with
an entropy bonus for exploration, is:

LCLIP+VF+S(θ, ϕ) = Êt

[
LCLIP(θ)− c1L

VF(ϕ) + c2S[πθ](st)
]
,

(3)
with coefficients c1 and c2 balancing the terms.

B. Practical Implementation Considerations

The implementation of PPO, as shown in the PyTorch code
[2], uses a buffer to store trajectories, applying Generalized
Advantage Estimation (GAE) with parameters γ = 0.99 and
λ = 0.97 to calculate advantages:

Ât = δt + (γλ)δt+1 + · · ·+ (γλ)T−t+1δT−1, (4)

where δt = rt + γV (st+1) − V (st). This method reduces
variance in advantage estimates, boosting learning efficiency.

Key practical features include early stopping based on KL-
divergence (target 0.01) to limit excessive policy shifts, and
parallelization via MPI for scalability. The policy and value
networks are typically multilayer perceptrons (MLPs) with
hidden layers (e.g., 64 units each), optimized using the Adam
optimizer with learning rates 3 × 10−4 for the policy and
1× 10−3 for the value function.



C. Performance Insights

Schulman et al. [1] demonstrated the effectiveness of PPO
on benchmarks such as MuJoCo tasks (e.g., HalfCheetah)
and Atari games, achieving average normalized scores of
0.82 with ϵ = 0.2. Its simplicity and sample efficiency
make it well-suited for both discrete and continuous action
spaces, outperforming methods like A2C in terms of sample
complexity.

III. DDPG DESCRIPTION

A. Methodology and Key Components

Deep Deterministic Policy Gradient (DDPG), proposed by
Lillicrap et al. [3], is an off-policy actor-critic algorithm
designed for continuous action spaces. It combines Q-learning
with deterministic policy gradients, simultaneously learning a
Q-function Qϕ(s, a) and a deterministic policy µθ(s).

Qϕ(st, at) = E [r(st, at) + γQϕ(st+1, µθ(st+1))] , (5)

and the policy is optimized to maximize the Q-value:

∇θJ ≈ Est∼ρβ

[
∇θQϕ(s, a)|s=st,a=µθ(st)

]
. (6)

DDPG tackles instability in neural network training with
two features: a replay buffer to store transitions (s, a, r, s′, d),
supporting off-policy learning, and target networks Qϕtarg and
µθtarg , updated via Polyak averaging:

ϕtarg ← ρϕtarg + (1− ρ)ϕ, θtarg ← ρθtarg + (1− ρ)θ, (7)

where ρ = 0.995 is typical.

B. Network Architecture and Exploration Strategy

The PyTorch implementation [4] uses an MLP actor-critic
architecture with hidden layers (e.g., 256 units each). The Q-
function loss is:

L(ϕ) = E
[(
Qϕ(s, a)− (r + γ(1− d)Qϕtarg(s

′, µθtarg(s
′)))

)2]
,

(8)
optimized with a Q-learning rate of 1×10−3, while the policy
loss is:

L(θ) = −E [Qϕ(s, µθ(s))] , (9)

optimized with a policy learning rate of 1× 10−3.
To encourage exploration during training, Gaussian noise

(standard deviation 0.1) is added to actions, and a uniform
random action phase is implemented for the first 10,000
steps. At test time, deterministic actions are used to assess
performance.

C. Performance Metrics

Lillicrap et al. [3] tested DDPG on over 20 MuJoCo
tasks, achieving normalized scores exceeding 1.0 in cases like
HardCheetah (1.311 average), often outperforming planning-
based solvers like iLQG. Its capacity to learn from pixels
and manage high-dimensional continuous control tasks under-
scores its strengths.

IV. CRITICAL ANALYSIS

A. Algorithm Design Differences

PPO and DDPG differ fundamentally in their RL ap-
proaches. PPO’s on-policy nature requires fresh data per
update, using a clipped objective to maintain stability, whereas
DDPG’s off-policy method uses a replay buffer for data
efficiency, relying on target networks to stabilize Q-learning.
PPO’s stochastic policy supports exploration via entropy regu-
larization, while DDPG’s deterministic policy requires external
noise for exploration.

Mathematically, PPO limits policy updates within a trust
region (1−ϵ to 1+ϵ), contrasting with DDPG’s unconstrained
gradient ascent on the Q-function. This design makes PPO less
likely to experience drastic updates but potentially slower to
converge in complex tasks, whereas DDPG adapts quickly to
continuous domains but may face instability without careful
tuning.

B. Execution and Implementation

In execution, PPO’s multi-epoch optimization per trajectory
batch improves sample efficiency, as seen in its strong Atari
performance (30 games won in training average) [1]. DDPG’s
single-step updates per batch, paired with a large replay
buffer (1 million transitions), allow it to learn from varied
experiences, excelling in tasks like locomotion (e.g., Cheetah)
[3].

Implementation-wise, PPO’s simplicity (requiring fewer hy-
perparameters and no separate target networks) contrasts with
DDPG’s complexity, involving dual networks and noise tun-
ing. PPO’s early stopping based on KL-divergence enhances
stability, while DDPG’s reliance on Polyak averaging requires
precise ρ selection.

C. Performance Comparison

Performance depends on the task domain. In discrete action
spaces like Atari, PPO outperforms DDPG (not applicable due
to its continuous focus) and other methods like A2C, achieving
higher sample efficiency [1]. In continuous control tasks
(e.g., MuJoCo), PPO performs well (0.82 normalized) but is
surpassed by DDPG in complex scenarios (e.g., HardCheetah:
1.311 vs. PPO’s typical < 1.0), where precise action control
is vital [3].

PPO’s stability suits environments needing consistent
progress, such as robotic simulation with discrete elements.
DDPG’s strong performance in high-dimensional continuous
tasks, like humanoid locomotion, supports its use where fine-
tuned actions are more critical than stability.

V. CONCLUSION

This analysis shows that PPO and DDPG address different
RL needs. PPO provides a stable, sample-efficient solution for
diverse environments, performing well in tasks with moderate
complexity. DDPG, in contrast, delivers strong performance in
continuous control, outperforming PPO in scenarios requiring
precise action modulation. The choice between them depends



on task demands: PPO for stability and broad applicability,
DDPG for complex continuous domains.

REFERENCES

[1] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[2] S. Up, “Ppo pytorch implementation.”
https://github.com/openai/spinningup/tree/master/spinup/algos/pytorch/ppo,
2018. OpenAI.

[3] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, “Continuous control with deep reinforcement learning,”
in International Conference on Learning Representations (ICLR), 2016.

[4] S. Up, “Ddpg pytorch implementation.”
https://github.com/openai/spinningup/tree/master/spinup/algos/pytorch/ddpg,
2018. OpenAI.


