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Abstract—Anthropogenic activities release pollutants
into the air, which can negatively affect human health and
the environment. One such pollutant is nitrogen dioxide
(NO3), which can contribute to smog formation, decreased
crop growth and yield, and respiratory damage. This study
aimed to find a relationship between land use/land cover
(LULC) classifications and NO; levels in the air. We used
Google Earth Engine (GEE) to collect LULC and air
quality data using the Google Dynamic World and the
Sentinel-5P NRTI NO, datasets. We focused on Pasadena,
California, as it provided a good demonstration of an urban
area surrounded by greenery, allowing for an adequate
analysis of both forms of landscape and their impact on
air quality. Random forest (RF) and decision tree (DT)
classifiers were used on the provided datasets, with the
estimated probability of complete coverage for each LULC
type being the input features and the NO, density being the
output label, measured in mol/m2. Our output labels were
then discretized, classifying the categories into high and low
NO;. The machine learning classifier found a correlative
relationship between LULC and NO; levels, as signified
by our modeled accuracy outputting a value of 85%, with
an average fl1 score of 86%. We performed 10-fold cross-
validation to enhance the reliability of model evaluation.
The results from this study suggest that machine learning
models can be used to predict the changes in air quality
based on changes in LULC from anthropogenic activities.
With future studies confirming this relationship, inner-city
green spaces may benefit mental and physical well-being.

Index Terms—land use, land cover, air quality, nitrogen
dioxide, machine learning, random forest classifier, decision
tree classifier

I. INTRODUCTION

Land use/land cover (LULC) is a widely studied area
of research regarding mitigation or prevention solutions
related to man-made structures and green spaces. In
addition to understanding the impacts of anthropogenic
activities, researchers often attempt to find solutions for
the negative effects that can stem from these activities.
Nitrogen dioxide (NO;) has been linked to many lasting
effects when present in large quantities. These effects

include airway inflammation and increased risk for lung
cancer 'l While NO, is produced in natural combustion
processes and leaves the atmosphere by rain, an excess
is produced by anthropogenic activities, exacerbating the
effects seen when humans and environments are exposed
to this chemical. Nitric oxide (NO) is a product of gas-
powered vehicles, and when released into the air, it pairs
with ozone (O3), forming NO,. When paired with larger
cities with majority car infrastructure, one can assume
the NO, levels would be higher, thus decreasing the
air quality. The most beneficial action we can take to
decrease NO; is to use less nitrogenous fuel sources.
By implementing green spaces in high-density cities,
we can expect to see a decrease in NO; levels. The
characteristics of NO, as an air pollutant, its sources
from combustion processes, particularly those related
to gas-powered vehicles, underscore the importance of
investigating the correlation between LULC and NO,
levels in our study.

Google Earth Engine (GEE) is a cloud-based planetary-
scale environmental data analysis platform. It provides
access to a vast archive of satellite imagery and geospatial
datasets, as well as powerful analysis and visualization
capabilities. GEE is designed to enable scientists, re-
searchers, and developers to monitor and analyze changes
on Earth at unprecedented scales.

GEE has several features that make it a powerful tool
for environmental data analysis. These include:

« Dataset collection: GEE provides access to over 100
petabytes of satellite imagery and geospatial datasets,
including Landsat, Sentinel, MODIS, and VIIRS.
This data is updated regularly, providing users with
the most up-to-date information on Earth’s changing
environment.

« Powerful analysis and visualization capabilities: GEE
provides various tools for analyzing and visualiz-
ing environmental data. These tools include image
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processing, geospatial analysis, and raster mapping.
Users can use these tools to create maps, charts,
graphs, and other visuals to help them understand
their data.

« A built-in code editor: GEE has a built-in code editor
that allows users to write and run code to manipulate,
analyze, and export their data. This code can be
written in JavaScript or Python.

GEE is a powerful tool that allows scientists, re-
searchers, and developers to better understand and monitor
Earth’s changing environment. With petabytes of open-
source datasets made available to the public, there is
no end to the possibility of research that can stem
from using GEE. In this study, GEE was instrumental
in gathering LULC classifications and air quality data
from the Google Dynamic World and Sentinel-5P NRTI
NO, datasets, respectively. The latter provides near real-
time high resolution imagery of NO; concentrations. This
created a critical foundation that allowed investigation of
the relationship between LULC and NO; levels in the air.

In the field of machine learning, computers utilize
various techniques to learn from data and make predictions
based on the information provided. Depending on the
specific classification technique used, a classification
model can be trained to predict categorical class labels in
the form of input data points based on past observations.
In exploring the relationship between NO;, and LULC, the
application of machine learning introduces a novel and
impactful dimension to environmental research. The tra-
ditional methods of studying these associations often face
limitations in handling complex, non-linear relationships
within diverse datasets. Machine learning algorithms offer
a promising avenue for uncovering nuanced connections
between NO; concentrations and the complexities of
LULC. The capacity of these models to discern subtle pat-
terns and interactions, beyond the scope of conventional
statistical approaches, brings a new level of precision
to the analysis. By leveraging machine learning in this
context, we aim to enhance predictive accuracy and gain
insights into the dynamics governing the influence of land
use/land cover on NO, levels, ultimately contributing to
a more comprehensive understanding of environmental
dynamics and possibly aiding policymakers in crafting
effective environmental policies aimed at mitigating NO»
emissions and promoting sustainable land use practices.

Classification models utilize supervised learning, a type
of approach where the model learns from a dataset con-
taining input data linked to specific output labels (apriori
labeling). When these data are analyzed, the model can
then make predictions for new datasets by mapping them
to predicted output values. Our research uses a decision
tree (DT) and a random forest (RF) classifier. A DT makes
decisions based on input features, while an RF is an

ensemble of such trees, combining their outputs to improve
prediction accuracy through randomness and diversity.
RF and DT are considered nonparametric techniques,
which tend to yield better results, as they do not rely
on specific assumptions or hypotheses [?/. RF is versatile
and capable of handling numerical and categorical data
with minimal preprocessing. The ensemble nature of RF,
consisting of multiple decision trees, provides resilience
against overfitting, enhancing generalization to new data
and robustness against outliers. While logistic regression
is straightforward, it may struggle with non-linear relation-
ships, a challenge overcome by DT and RF. In comparison
to SVM, which might be sensitive to the choice of kernel
function, the simplicity and robustness of DT and RF
become apparent. Lastly, RF was chosen because it has
been shown to report the highest model accuracy when
dealing with LULC datasets 1!

The strength and accuracy of a classification model
provide the foundation for the results of an experiment. A
low model accuracy output can imply either underfitting
or the present lack of a relationship. In contrast, a higher
model accuracy number can imply overfitting or complex
patterns can be found to establish such a relationship.
The model’s results can be interpreted depending on the
purpose of the research. We used the classification metrics
of accuracy, precision, recall, and fl score to test our
hypothesis.

The purpose of this paper is to examine the relationship
between land use/land cover (LULC) and nitrogen dioxide
(NO,) levels in the urban region of Pasadena, California.
Utilizing Google Earth Engine (GEE) for data extrac-
tion, we use machine learning techniques, specifically a
decision tree (DT) and a random forest (RF) classifier,
to analyze the correlation between LULC patterns and
NO; concentrations. By implementing these classification
models, we aim to enhance predictive accuracy and gain
insights into the dynamics governing the influence of land
use/land cover on NO; levels.

The following sections provide a comprehensive ex-
amination of our study. The “Related Work” section
summarizes existing research contributing to our under-
standing of the relationship between land use/land cover
and nitrogen dioxide levels. The “Methodology” section
details our study area, the data preparation process for land
cover and air quality datasets, and the methodologies used,
including sampling strategies and data distribution across
attributes. The “Results” section presents our findings,
and the “Discussion” section interprets and contextualizes
these findings. The “Conclusion” section summarizes our
key insights and contributions, and the ‘“Future Work”
section outlines potential avenues for future research.
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II. RELATED WORK

In recent years, satellite remote sensing has been
a growing field that offers beneficial information for
understanding and visualizing the surface of our planet.
Many tools are available to the public that provide access to
satellite data and a way to analyze the data. As mentioned,
we decided to use GEE for our satellite imagery analysis
due to its easy-to-use code interface, the ability to run
complex algorithms, and the free access to petabytes of
datasets [2. The use of ML models in GEE, such as RF
classifier or support vector machine (SVM) classifier, is
relatively common (31,

Oo et al. [l implement a maximum likelihood algorithm
as their supervised classification approach. In doing this,
they can determine the maximum for a given statistic
from a known class of distributions. While also using a
supervised classification technique, we decided to use RF
and DT classifications, as they are more applicable to the
project.

As seen in a study by Talukdar et al. °) and Gao et al. (¢!
on LULC classification by machine learning classifiers
for satellite observations, we see RF algorithms have
been widely applied for solving environmental problems,
such as water resource management and natural hazard
management. It has also been shown to be beneficial
when used in satellite imagery analysis because it is a
combination of ensemble regression and classification
trees. Our study which uses satellite imagery datasets was
built off of RF classification to evaluate the relationship
between LULC and NO; levels regarding air quality.

Moreover, Prasai et al.[”l make use of a confusion
matrix to evaluate overall model accuracy. This allowed an
assessment of the user’s accuracy (the number of correctly
classified pixels divided by the total number of pixels
predicted within that LULC class) and the producer’s
accuracy (the number of correctly classified pixels divided
by the total number of pixels truly in that LULC class). We
used a similar approach, evaluating the precision, recall,
and f1 score, which makes use of a confusion matrix,
allowing us to have a basis for properly evaluating our
model.

The need for research on preventable measures against
the ever-growing air quality crisis is addressed in Zou
et al. 8. Their project addressed the impacts of LULC
on air quality in an urban setting and focused on PM,
referring to inhalable particles with a diameter of 10
micrometers or less, and found that there is a decrease
in PM concentrations in newly developed built-up areas.
This prompts questions about how large of an effect urban
development and LULC classifications can have on air
quality. A reason why this paper strives to answer this
question is the potential policy advocacy for more green
space development and preservation.

III. METHODOLOGY

This section elaborates on our research methodology,
which includes the study area, data preparation, and
the methods used in our study. We focus on Pasadena,
California, as our region of interest because it is an urban
center with a dense population and green spaces. This
allows us to understand the dynamic relationship between
urban development and natural elements. We use GEE
to prepare land cover datasets and air quality datasets. We
then describe our sampling strategies and data distribution
across attributes, which sets the stage for the subsequent
subsections that delve into each aspect of our approach.

A. Study Area

Our research was focused on Pasadena, California. Due
to its dense population, topographical features, and heavy
transportation, California has built a reputation for being
one of the most polluted states in the United States.
Pasadena, a city in the Los Angeles metropolitan area,
illustrates the environmental issues faced by urban centers.
It presents a clear representation of urban areas surrounded
by green spaces, which can help us highlight the dynamic
relationship between urban development and the presence
of natural elements. Our inclusion of both urban and green
areas aims to emphasize the relationship between human-
made structures and natural environments on the presence
of nitrogen dioxide in the air. Using GEE, we selected
our specific region of interest in the form of a coordinate

polygon:

(—118.22580057194779,34.062493521042164),
(—117.91269022038529,34.062493521042164),
(—117.91269022038529,34.31354553281858), (1)
(—118.22580057194779,34.31354553281858),
(—118.22580057194779,34.062493521042164)

As seen in Fig. 1, these coordinates map out our region
of interest for this section of Pasadena, California.
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Fig. 1: Region of Interest.
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B. Land Cover Datasets

This research uses the Google Dynamic World Dataset -
GOOGLE/DYNAMICWORLD/V1. Dynamic world data
is gathered and processed in near real-time, providing a
continuous stream of LULC predictions produced using
deep learning techniques on 10m Sentinel-2 imagery [°].
The data retrieved was filtered monthly from January 1,
2021, to December 1, 2021, for a total of 199 images. This
data was also restricted to our region of interest using the
“filterBounds” function provided by Google Earth Engine.

Each month, multiple satellite scans, or images, are
taken. Each image contains 10 bands of raster layers,
including information such as the estimated probability
of complete coverage by water, crops, trees, and so on,
with all probability bands adding up to 1. To reduce the
size of these images, we calculated the mean of the values
for each band at every pixel across the entire month. This
resulted in one image per month range, which allows us to
properly sample the pixel values for each band to produce
our data.

The “sampleRegions” function provided by GEE is a
powerful tool that can be used to reduce the size of large
images or to extract data from specific areas of an image.
It is an essential tool for working with satellite imagery,
as it can help to improve the efficiency and performance
of image processing tasks. We used the “sampleRegions”
function to sample pixel values from the given satellite
scans based on the scale and collection given. We used a
scale of 100, and we specified the collection as the region
of interest, which meant that we only sampled pixels from
the area of interest. This gave us the band values from the
sampled pixels for the image retrieved per month.

Using this sampling strategy, we obtained 97,440 ele-
ments, or pixel values, that contained the aforementioned
probability bands for each month range. For example,
we obtained 97,440 scans for January—February, Febru-
ary—March, and so on. This gave us a total of 1,071,840
elements. We then exported this data to Excel using
GEE’s export feature. Each element was a row, with the
appropriate land cover classification as the column and
the estimated probability of complete coverage by those
classifications as the data contained within those columns.
As discussed later, this data was limited by the Excel row
limit, allowing us to use only 1,048,576 elements.

Lastly, we deleted the label column provided by the
Dynamic World dataset, as the averaging process and
alterations to the order of the row made it unreliable.

C. Air Quality Datasets

The Sentinel-5P NRTI NO, dataset was used to provide
near real-time high-resolution imagery of nitrogen dioxide
concentrations. This chemical compound is produced
mainly through anthropogenic activities, such as fossil fuel
combustion and biomass burning ', This research used

the “NO2 _column number density” band provided by
this dataset, which represents the total vertical column of
NO; (ratio of the slant column density of NO; and the total
air mass factor, measured in mol/m?). As shown in Fig.2,a
histogram is shown graphing the frequency of occurrence
for each record present and categorizing them into two
bins. By having two bins, we create a binary classification
task with two labeled outputs to be “Low NO; Levels” and
“High NO, Levels”. Before preprocessing, the air quality
dataset used the equal width discretization technique, but it
did not produce good findings because most of the dataset
lay in the “Low NO; Levels”, making it the majority class
and potentially biasing the model in its predictions. This
issue was causing our other label to output an f1 score
that was not on par with its counterpart, 0.85 compared
to 0.65, respectively, to the classified labels mentioned
above. A proposed solution was incorporating custom
weights for each label, with the minority class having a
higher weight. When the model was trained, the intention
would be to mitigate that bias and allow the smaller bin to
be equally chosen as the majority class. However, that
might introduce potential problems that we could not
foresee. Therefore, we changed our approach, considered
equal frequency, and still have it as a binary classification
problem. After doing so, the bins would have an equal
amount of records, although the range would be dynamic
to account for half of the dataset in each respective bin.
Our f1 score for both output labels was almost the same,
which was 0.86, indicating that the approach had worked
in our favor and had better results than the former method.

Histogram of NO2_column_number_density
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Fig. 2: Discretizing the NO; Attribute.

D. Sampling Strategies

The Dynamic World dataset provided classification
based on ecosystem types, which was divided into 9

categories: “crops”, “trees”, “grass”, “shrubs and scrubs”,
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Fig. 3: The Proposed Framework.

“flooded vegetation”, “water bodies”’, “built-up areas”,
“bare land”, and “snow and ice”. This data was aggregated
with the Sentinel-5p NRTI NO, dataset, with each pixel
value for each band corresponding with a pixel on the
“NO2_column_number density” band.

Using the GEE “sampleRegions” function, sample
points (pixels) were taken from our region of interest,
which spanned areas of natural land and high human
activity. Using Python’s “Pandas” library, we used its
“qcut” function to bin the numerical data of nitrogen
dioxide evenly into discrete intervals.

Random forest is an ensemble learning technique that
builds multiple decision trees from randomly sampled
data and features. The final prediction is determined by a
majority vote in classification or an average in regression.
RF was run on the extracted data, explained in the results
section. Fig. 3 highlights a summary of the approach.

E. Data Distribution Across Attributes
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Fig. 4: Feature-Label Association Heatmap.

To understand the relationship across our respective
categorical dimensions, a heatmap, as shown in Fig. 4, was
utilized to visually interpret the intensity of data points
in our matrix. Each cell within the matrix corresponds
to an intersection of our input features compared to our
discretized output labels. The color of each cell indicates
the magnitude and intensity of the association between
the input and target label. The intensity between the input
features and the target labels was substantial enough to
further experiment with this approach. Eventually, we
have come to integrate different classifiers to validate this
association.

F. Classifiers Chosen

Random forest (RF) and decision tree (DT) classifiers
were chosen for this study due to several reasons. Firstly,
they are non-parametric techniques that do not rely on
specific assumptions or hypotheses, which tends to yield
better results for complex data like LULC and air quality
datasets °l. Not to mention, RF is an ensemble learning
method that combines multiple decision trees, making it
robust against overfitting and outliers compared to single
classifiers. Also, previous studies on LULC classification
using machine learning have shown that RF often reports
the highest model accuracy 1. Finally, RF can handle both
numerical and categorical data with minimal preprocess-
ing, making it well-suited for our diverse feature set.

IV. REesuLTs

We ran a decision tree and a random forest classifier
on our data. The DT had an accuracy of 85%, while the
RF classifier had an accuracy of 86%. We also calculated
the precision, recall, and f1 score values (Equations 2, 3,
and 4), both popular classification metrics used to evaluate
various aspects of model performance, including accuracy.
Besides the two classifiers we fine-tuned, an external tool,
“LazyPredict” was utilized to find other classifiers that
could perform better. The results of these classification
metrics are shown in Fig. 7. The consistency between the
identified high-performing models by “LazyPredict” and
our DT and RF classifiers reinforces the validity of our
choices. Moreover, we measured model accuracy using the
cross-validation technique, which is a resampling method
that uses k sections of the data to test and train a model
on each iteration of k. Using k = 10, or 10 iterations, the
models achieved a mean accuracy of 86%. The formulas
for each metric are displayed below, while Fig. 5 and
Fig. 6 illustrate the results, respectively. The metrics
for the outsourced tool mentioned above align with the
consistency of the classifier that was best for this dataset.

TP
Precision= ——— 2)
TP+FP
TP
Recall= ———— 3)
TP+FN
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2 % Precision X Recall
F1S = 4
core Precision + Recall “)

The classifier configurations for which the model
produced this precision can be seen in the following for
both DT and RF. Various experiments were conducted
to finetune the optimal hyperparameters for the two
classifiers. GPU configurations were unavailable using
the packages associated with these classifiers, so training
the models takes some time. The estimated time to have
a trained model for RF can be decreased if “n_jobs”
parameter is changed to -1, helping to use all available
CPU cores to speed up the training process.

DecisionTreeClassifier(criterion="gini
’, splitter='best’, max_depth=10,
min_samples_split=10,
min_samples_leaf=5, max_features=
None, class_weight=None)

RandomForestClassifier(n_estimators
=100, criterion='gini’, max_depth=
None, min_samples_split=2,
min_samples_leaf=1,
min_weight_fraction_leaf=0.0,
max_features=’'sqrt’,
max_leaf_nodes=None,
min_impurity_decrease=0.0,
bootstrap=True, oob_score=False,
n_jobs=None, random_state=None,
verbose=0, warm_start=False,
class_weight=None, ccp_alpha=0.0,
max_samples=None)

Decision Tree Classifier
0.9

0.85

o . . - l . .
075
precision recall fl-score

m High NO2 Levels m Low NO2 Levels

Fig. 5: Classification Report for Decision Tree Classifier.

Random Forest Classifier
0.88

0.86
0.82
precision recall

fl-score

W High NO2 Levels ®Low NO2 Levels

Fig. 6: Classification Report for Random Forest
Classifier.

Model Accuracy

Fig. 7: Classifier Performance Comparison Based on
Accuracy.

Using a feature importance score, we determine the
percentage that each feature contributed to our final model.
This can be seen in Table I.

TABLE I: Feature Importance of Attributes Retrieved
from LULC.

Attribute Type Importance Score
Built 0.25
Shrub and Scrub 0.19
Trees 0.11
Grass 0.11
Water 0.07
Bare 0.07
Crops 0.07
Snow and Ice 0.06
Flooded Vegetation 0.06

V. DiscussioN

An accuracy of 85% can lead us to strongly conclude
that there is a strong association between LULC and air
quality, specifically the presence of nitrogen dioxide. This
also means that we can use the generated model to predict
how changes in land cover over time due to deforestation,
urban development, or wildfires can affect pollution. As ni-
trogen dioxide is mainly produced through anthropogenic
activities 11, we believe that the link between an increase
in urban landscapes and an increase in NO, is logical,
as anthropogenic activities present themselves mostly in
highly urban areas, which contain factories, numerous
means of transportation, workplaces, and so on.

These technological advances, despite improving dif-
ferent parts of our quality of life and standard of living,
can also contribute to a lower quality of living through
dangers like reduced air quality can lead to respiratory
damage, lower crop yields, acid rain, smog, etc ['1. As more
companies begin to place a focus on carbon neutrality and
to phase out the use of fossil fuels, this can decrease
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the presence of NO; in the air. In urban landscapes,
incorporating green spaces with trees can effectively
counterbalance air pollution by allowing trees to absorb
nitrogen dioxide, leading to improved air quality and
mitigated negative effects [10: (111,

We speculate that future research can incorporate bigger
regions of interest, allowing for better and broader distinc-
tions between LULC areas. Our data was extracted using
a scale of 100, and we are curious to see what changes or
improvements in data quality result from increasing the
scale of our data. We would also be interested in seeing
the relationship between increased NO, presence in the air
and crop yields in large-scale farming units surrounded by
urban areas.

Research has shown that greenery in urban settings is
linked to improved mental health and cognitive function.
Studies have also shown that people who spend time in
green spaces have better attention, memory, and problem-
solving skills ['?]. This is likely because nature can provide
a stimulating environment that encourages us to be active
and engaged. This research can contribute to the growing
body of research on the relationship between LULC, air
quality, pollution, and how the constantly evolving urban
landscape can continue to thrive by incorporating these
green spaces.

Regarding the replicability of the findings obtained
using GEE, it is important to remember that the selected
coordinates were crucial because they offered a strong
distinction between natural landscapes and human-made
structures in an urban environment. Those who wish to
replicate our findings in the future, specifically using
different cities, should bear in mind a region of interest
comprised solely of vegetation can result in the model
not providing valuable data, as the majority of the data
is skewed toward one land type, disregarding the other
nine types. The same can be said for a region of interest
comprised solely of built land or water.

VI. ConcLusioN AND FUTURE WORK

Through our findings, we tested two machine learn-
ing classifiers to establish a relationship between our
targeted attributes, LULC and NO, levels. We imple-
mented random forest and decision tree classifiers, which
attempted to find complex patterns between our targeted
attributes through model training and validation. From our
experiments, we found that the difference in these model
accuracies outputted was negligible. Our accuracy was
around 0.85, with a mean cross-validation score of 0.86.
We found that having 10 subsets of the dataset through
cross-validation was appropriate given our dataset’s large
amount of data, close to 1.05 million instances. Our
approach implemented these classifiers on a specific
region of interest in California, that being the city of
Pasadena. Our codebase utilized the results from Google

Earth Engine to supplement our machine learning research
and answer our goals and questions. The results of our
experiment shed light on the importance of continuing
LULC and air quality research and how their association
can be applied to solutions designed to counteract the
negative effects of anthropogenic activities.

With an accuracy of 85%), we can conclude that there is
a strong correlation between LULC and air quality. This
brings into question the utility of this research such as
how could the results stemming from this research be
used for the environment and environmental policy? The
results, showcasing human structures emitting NO; into
the atmosphere, can be utilized by experts, scientists, and
lawmakers to determine whether any further restrictions
over current environmental regulations should be imple-
mented alongside creating more designated green spaces.

Although we were able to provide a machine learning
classifier that addressed our research goals, we encourage
those who are reading to contextually apply our findings
to the California standard for NO; levels, either by unit
conversion or some other technique, to further contribute
research to the relationship between LULC and its rela-
tionship with the presence of NO,. It benefits research
to indicate the relevance of these patterns found by the
classifier to validate their results. These findings would
not only serve as evidence of the model’s general usability
in environmental awareness of what impacts air quality but
also potentially contribute to the reduction of it. Another
avenue of exploration that can be considered is finding
other regions of interest similar to the one analyzed in
this article to give more insight into that chosen region’s
environment and distinguish within that region its different
types of land classifications. The scalability of our system
can be demonstrated by the results of our codebase, which
can be adapted to different types of data and assert with
strong confidence that a relationship is present between
LULC and air quality. The source code for this paper
can be found here: https://github.com/Benyamain/lulc-air-
quality.
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