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Problem & 
Motivation
▪ Dynamic industrial environments pose 

challenges for mobile robot navigation due to 
unpredictable obstacles and changing layouts

▪ Traditional navigation methods struggle to 
adapt to these dynamic conditions without 
extensive reprogramming

▪ Recent research has explored adaptive 
techniques, integrating vision, physics, and 
reinforcement learning (RL)

▪ Our work addresses these challenges with a 
novel integrated framework combining vision-
based perception, physics-informed control, 
and adaptive decision-making



Related literature
▪ Recent research in robot navigation has 

focused on vision-based perception, physics-
informed control, and reinforcement learning 
approaches

▪ Vision-based navigation uses cameras and 
computer vision algorithms to perceive the 
environment and make navigation decisions

▪ Physics-informed control incorporates physical 
constraints and models into the control 
system to improve the robot's movement

▪ Reinforcement learning uses rewards and 
punishments to train robots to make decisions 
in complex environments



Research Focus: CNN-PPO-
PINN Architecture▪ Vision-Based Perception: CNN for object 

detection and distance estimation
▪ Integrated Framework: Combines CNN, PINN, 

and PPO for enhanced navigation in dynamic 
environments

▪ Physics-Informed Control: PINN for precise 
wheel dynamics control

▪ Adaptive Decision-Making: PPO for real-time 
decision-making



Methodology: Integrated 
Vision, Physics, and RL 
Framework

▪ CNN: Detects target objects and estimates 
distances from RGB images and depth maps

▪ PINN: Controls wheel torque via physically-
constrained dynamics

▪ PPO: Learns optimal navigation strategies 
through continuous state-action feedback



experimental 
environment

TurtleBot3 robotic platform used in our experiments

Gazebo: These components are demonstrated working in 
concert within a ROS2 Humble and Gazebo Classic 
simulation environment, showcasing the framework'



data Format

<class_id> <x_center> <y_center> <width> <height> <distance>

• All values except class_id are normalized to [0, 1]
• Distance is in meters, representing camera-to-object center
• Format supports both object detection and distance estimation

The dataset includes sensor 
readings LiDAR, RGB/Depth 
camera images. Using 
YOLOv5l6 model to generate 
bounding boxes and 
categories, and extended the 
label format to include target 
distances



Direct depth estimation challenges showing 
inaccurate distance measurement (4.1 m) due 
to inclusion of multiple objects within the 
bounding box

Problems with distance 
information processing



Camera Top Angle 
Processing

Schematic diagram of the monocular 
camera ranging algorithm showing the 
pinhole imaging principle



Region growing segmentation results 
using uniform threshold, showing 
limitations in object boundary detection

Cross-validation of distance 
information



Cross-validation of distance 
information

Improved region growing segmentation using 
category-specific thresholds, demonstrating 
better object boundary definition



Distance 
information

Visualization of raw depth image data 
used for distance estimation



Processing pipeline showing: (a) Original RGB 
image, (b) Segmented depth image, (c) 
Horizontal projection, and (d) Bounding box 
detection

Depth camera 
mapping attempt



Cross-validation of distance 
information

Evaluating LiDAR recognition for target 
depth distance variation 



dataset 
preprocessing

The training dataset comprises 10,077 images 
split in an 8:2 ratio between training and 
validation sets, with a batch size of 4 over 50 
epochs

Preprocessed with Python scripts for format and 
class checks

Removed invalid boxes; manually reviewed 
samples with LabelImg

Applied data augmentation: flip, brightness, 
contrast, noise

Updated labels to match all augmented images



Vision-Based 
Perception (CNN)
▪ Modified Faster R-CNN with ResNet101 + FPN 

backbone
▪ Joint object detection & distance estimation
▪ Depth refinement using region-growing 

segmentation with class-specific thresholds 
for accurate distance measurement

▪ RGB + LiDAR data integrated for robust 
environmental understanding



Faster R-CNN 
framework

Faster R-CNN framework showing the 
network architecture and processing 
pipeline



feature extraction
Faster R-CNN architecture (input 3 × 720 × 1280)

Our model is based on Faster R-CNN 
with a ResNet-FPN backbone. The 
standard classification and bounding 
box heads are retained, using cross-
entropy and Smooth L1 loss 
respectively. We additionally introduce 
a custom distance regression head that 
outputs the estimated object-camera 
distance for each RoI, trained with L1 
loss.



Physics-Informed 
Control (PINN)
▪ Neural network embeds wheel dynamics: 
▪ where J represents the wheel's moment of 

inertia, b is the damping coefficient, θ is the 
wheel angle, τ is the motor torque and the 
load torque

▪ Inputs: Wheel states, torques, timestep (8D 
input vector)



Physics-Informed 
Control (PINN)
▪ [64, 32] hidden layers with ReLU activations
▪ Multi-threaded ROS2 services for real-time 

torque updates at 30 Hz
▪ Replaces speed-control plugins with reverse 

torque strategy for direct control of wheel 
acceleration



PINN framework

PINN torque control flowchart showing the 
multi-threaded control architecture



Reinforcement 
Learning (PPO)
▪ Agent Input (6D state): Target distance, 

obstacle distance, linear & angular velocity, 
visibility flag, normalized timestep

▪ Policy & Critic Networks: Dual [256, 128] 
layers, ReLU activations

▪ Balances goal-seeking, obstacle avoidance, 
smooth motion, and energy usage



Results & discussion
▪ exhibited effective navigation in dynamic 

environments, with the PPO algorithm 
successfully learning to combine information 
from the CNN and PINN components to 
generate appropriate navigation commands

▪ Performance evaluation showed consistently 
high success rates in reaching target locations 
while maintaining smooth trajectory 
generation

▪ The system demonstrated reliable obstacle 
avoidance capabilities and effective speed 
control that adapted to environmental 
conditions



Optimizer 
Comparison

SGD with 
Momentum

SGD

Adam

▪ AdamW converges the fastest 
with the lowest loss and 
highest precision among all 
optimizers.

▪ SGD converges slowly and 
shows unstable learning, with 
the lowest precision and 
highest loss.

▪ SGD with Momentum achieves 
the highest recall and stable 
performance, offering strong 
generalization.



Yolov5l6 vs Faster RCNN 
(YOLOV5l6)

▪ One-stage model, very fast
▪ Bounding boxes less accurate, sometimes 

overlapping
▪ No distance estimation
▪ Good for real-time tasks, but less reliable in 

complex scenes



Yolov5l6 vs Faster RCNN 
(faster rcnn)

▪ Two-stage model, more accurate
▪ Boxes are tighter and more precise

▪ Supports real-world distance output

▪ Better at detecting occluded or cluttered 
objects



Ppo solution

• Policy collapse due to unstable updates

• Delay or noise in visual perception (e.g., 
Model/Camera latency)

• Sparse or overly complex reward design



Ppo solution

• Improve reward shaping and feedback clarity

• Integrate more stable perception models

• Fine-tune PPO hyperparameters (learning rate, 
entropy, batch size)



PINN result



Conclusion
▪ a modified Faster R-CNN architecture with 

ResNet101 backbone for effective object 
detection and distance estimation

▪ a PINN-based wheel dynamics controller 
operating at 30 Hz with precise torque control

▪ a PPO implementation with verified 
hyperparameters managing real-time 
navigation decisions



Future work
▪ focus on bridging the sim-to-real gap through 

improved physics modeling
▪ optimizing computational efficiency for real-

time operation, expanding the framework's 
capabilities to support a broader range of 
environments

▪ incorporating additional sensor modalities for 
enhanced perception



questions?
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