
Enhancing Multi-Floor Indoor Localization
Accuracy Using Fingerprint-Based Dynamic k-NN

Approach
Benyamain Yacoob, Daniel Marku, Mina Maleki

Dept. of Electrical & Computer Engineering & Computer Science
University of Detroit Mercy
Detroit, MI, United States

(yacoobby, markuda, malekimi)@udmercy.edu

Abstract—Accurately localizing indoor spaces with multiple
floors presents a significant challenge, yet it is crucial for a
range of applications from smart buildings to emergency response
systems. This study presents a novel approach to multi-floor
indoor positioning using Wi-Fi received signal strength (RSS)
fingerprinting. Our method integrates a novel voting scheme for
floor differentiation and a dynamic “valid neighbor” selection
technique for user localization, both implemented within a k-
nearest neighbors (k-NN) framework. The approach was tested
and validated using both sparse and dense fingerprint datasets
collected across three floors of an engineering building, featuring
various room sizes and layouts. Enhanced by additional com-
ponents, our voting scheme achieved complete accuracy in floor
differentiation for the dense dataset, improving from 99.82% to
100%, and increased accuracy in the sparse dataset from 94.93%
to 97.46%. Additionally, using the dynamic selection approach,
we reduced the mean localization error from 3.04 meters to 2.87
meters in the sparse dataset, and from 1.65 meters to 1.53 meters
in the dense dataset.

Index Terms—Indoor Positioning, Received Signal Strength,
Fingerprinting, Multi-floor Localization

I. INTRODUCTION

As the Internet of Things (IoT) branches into indoor en-
vironments, the demand for reliable indoor location-based
services (LBS) grows. While GPS is widely used for outdoor
positioning, it is often unreliable inside buildings due to weak
signals. This limitation has led to the design and development
of indoor positioning systems that use technologies such as
Wi-Fi, Bluetooth beacons, and RFID to provide accurate loca-
tion data in indoor environments[1]. Among these, Wi-Fi-based
fingerprinting is particularly promising for multi-floor settings
due to its simplicity, cost-effectiveness, and ability to utilize
existing Wi-Fi network infrastructure. This method leverages
the received signal strength (RSS) from Wi-Fi access points
(APs) to create unique spatial signatures, or “fingerprints,” for
different locations within a building. These methods typically
involve a two-phase process: an “offline” training phase, where
signal measurements are collected at known locations to create
a fingerprint database, and an “online phase”, where real-time
signal measurements are compared against the database to
estimate the user’s location [2]–[4].

The field of indoor positioning has seen a significant shift to-
wards machine learning (ML) techniques in recent years, aim-
ing to enhance both the accuracy and reliability of localization
models. Various ML algorithms have been explored for this
domain like random forest (RF)[5], [6], support vector machines
(SVM)[7], k-nearest neighbors (k-NN) [8]–[11], gradient boosting
(GB) techniques[12], [13], and neural networks (NN) and its
variants [14], [15]. Among these, k-NN algorithm has garnered
significant attention due to its simplicity and effectiveness,
making it a cornerstone for achieving high-precision indoor
positioning in complex multi-floor environments.

The core approach of the k-NN algorithm involves com-
paring a user’s current signal readings with a database of
pre-collected location fingerprints to determine similarity. The
algorithm then identifies the k most similar fingerprints and
estimates the user’s position by aggregating their correspond-
ing locations. Traditional distance metrics such as Euclidean
distance or cosine similarity often struggle to capture the
intricacies of signal propagation across different floors and
through various architectural features[1]. To address the lim-
itations of signal variability, diverse spatial contexts, and
AP placement, recent research has explored dynamic k-NN
approaches[9]–[11], [15]–[17], where the value of k or the weight-
ing of neighbors adapts based on the physical characteristics
and signal variability of each floor or location within a build-
ing. Enhancing localization accuracy, particularly in multi-
floor environments, remains a significant challenge that we
aim to tackle.

This paper addresses multi-floor user localization by in-
troducing novel techniques within the k-NN framework, en-
hancing both accuracy and robustness in complex indoor
environments through innovative modifications and improve-
ments. We propose an amplified voting scheme for floor
differentiation, which enhances the robustness of floor-level
distinctions. Additionally, we incorporate a dynamic “valid
neighbor” selection technique for user estimations, improving
the accuracy of position estimation within each floor. A key
innovation in our approach is the implementation of floor-
specific filtering and normalization processes. This technique



accounts for the unique RSS distribution patterns on each floor,
allowing our algorithm to adapt to the specific signal propa-
gation characteristics of different levels within a building.

The remainder of this paper is organized as follows. Section
II reviews related work on ML approaches for multi-floor and
indoor positioning. Section III details our methodology, in-
cluding the fingerprinting process, the amplified voting scheme
for floor differentiation, and the dynamic “valid neighbor”
selection technique for localization. Section IV presents our
dataset and analyzes and discusses the results. Section V
concludes with insights on our findings and potential future
directions.

II. RELATED WORK

Existing indoor positioning methods found in literature
strive to incorporate ML approaches capable of accurate
localization results across all floors within widespread indoor
environments. An et al.[18] extract a variety of additional
attributes from mobile users alongside RSS values such as
barometric pressure, accelerometer, and gyroscope measure-
ments to improve floor differentiation. A slope formula, using
collected air pressure as its variables, was created to visually
map sudden fluctuations in the slope as changes in eleva-
tion. The trajectory of users was calculated using the latter
collected measurements and the pedestrian dead reckoning
(PDR) method. Narasimman and Alphones[6] tackled feature
extraction before classification or regression by proposing
the DumbLoc framework. This method utilizes RSS values
from the strongest AP signals and normalized output labels,
achieving high positioning accuracy without the need for
optimization. DumbLoc achieved a mean 3-D positioning
error of 8.45 meters and demonstrated superior performance
compared to techniques like zero prediction and principal
component analysis (PCA). Some studies have investigated
the k-NN algorithm due to its simplicity and effectiveness in
estimating a user’s location based on the features of nearby
fingerprints. Additionally, research has explored the integration
of custom distance functions with the k-NN algorithm for
indoor positioning. For example, Zhou et al.[8] proposed the Q
weighted k-NN algorithm (Q-WKNN), which uses base Q to
transform RSS into Q-based RSS, thereby enhancing position-
ing accuracy and real-time performance. Their study evaluated
the Q-WKNN against other indoor positioning algorithms
using data from Zenodo and underground parking databases.
Wang et al.[9] developed a novel WKNN algorithm based on
signal similarity and spatial positioning, examining the corre-
lation between RSS similarity and position distance to boost
the WKNN algorithm’s accuracy. Another study by Wang et
al.[10] introduced an improved Wi-Fi positioning method that
incorporates fingerprint clustering and a signal-weighted Eu-
clidean distance (SWED). Their experimental results, obtained
from two test environments, showed that the position label-
assisted (PL-assisted) clustering effectively represented the
reference points’ position distribution. Alfakih and Keche[19]

propose an enhanced nearest neighbor algorithm, the nearest
kth-nearest neighbor (NK-NN), which uses all collected RSS

samples instead of averages. Their method screens out noisy
RSS testing samples and implements a differentiation process
on the kth-nearest training samples to improve positioning
accuracy. Peng et al.[16] introduce a new Wi-Fi dynamic selec-
tion method for nearest neighbor localization. Their approach
combines particle filtering and Kalman filtering to extract RSS
characteristic values, addressing issues of particle degradation
and noise filtering in Wi-Fi positioning. Abdulkarim and
Sarhang[20] address RSS fluctuations in indoor environments
by normalizing Wi-Fi AP RSS values. Their method integrates
normalized RSS data with smartphone sensor measurements
using a Kalman filter to improve positioning accuracy in
complex indoor structures. Hu and Hu[17] introduce the static
continuous statistical characteristics-soft range limited-self-
adaptive WKNN (SCSC-SRL-SAWKNN) algorithm, which
distinguishes between stationary and moving states in Wi-Fi
positioning. Their method uses a moving window approach
and cumulative mean of signals to enhance RSS stability,
particularly in static scenarios. Yacoob et al.[11] introduced a
customized distance function based on RSS similarity for use
with the k-NN algorithm, which adapts to the complexities of
indoor signals and dynamically identifies the closest neighbors
based on the user’s latent representations. Although there ex-
ists notable literature on indoor positioning, achieving accurate
estimations within indoor spaces remains a challenge.

III. METHODOLOGY

Our methodology for multi-floor user localization using k-
NN consists of several key components: data collection and
preparation conducted while the model is offline. The offline
stage is followed by floor differentiation, data filtering, nor-
malization, and user localization conducted during the model’s
online stage. Each of these components play a crucial role in
achieving accurate indoor positioning. The flowchart diagram
in Figure 1 depicts the process steps across the offline and
online stages[11].

A. Data Collection

The framework is contingent on populated RSS data to
operate and perform estimations. Correspondingly, the motive
of the offline stage is the collection of RSS values from a
variety of different locations within the site of localization.
The collection is done through the fingerprinting method.
Fingerprints act as snapshots of RSS data from a marked
position on a floor plan. The key attributes of a fingerprint
are RSS value, Cartesian spatial (x, y) coordinates, and AP
MAC address.

Two fingerprint sessions were orchestrated to gauge the
model’s performance under distinct conditions. The first ses-
sion had fingerprints placed sparsely across the localization
zone, and the other had a dense distribution of fingerprints
across the same area. Fingerprints in the datasets were ordered
following a grid formation. Each fingerprint in the dense set
is placed 8 to 9 feet apart, while, in the sparse set, fingerprints
were placed to seldomly accommodate every room, allowing
for minimal sufficient neighbor selection. An arrangement of



Fig. 1. Multi-floor indoor localization framework utilizing Wi-Fi fingerprint-
ing and k-NN approach

fingerprints in both sets can be seen in Figure 2. Taking into
account the unpredictability of the RSS signal, 3 consecutive
Wi-Fi scans were taken for each fingerprint. The strongest
RSS value to each AP was stored for that fingerprint record.
Fingerprints include both 2.4 GHz and 5 GHz frequency
bands. A sample of raw fingerprint data is present in the
“RSS Wi-Fi Fingerprints” table in Figure 1. The RSS values
collected in this research exist in a range between -30 dBm
and -100 dBm, where -30 indicates the AP is within arm’s
reach and -100 signals that the AP was not detected. The
“AP information” table in Figure 1 is generated via the
fingerprinting process to identify reliable APs that will be
considered in data preprocessing.

Fig. 2. Fingerprints in sparse v. dense training samples

B. Data Preparation

Before delivering fingerprint data to the model, fingerprint
records are reformatted during the offline phase to reduce
training time, enhance readability, and account for missing
RSS values in fingerprint records. The “AP translation” table
in Figure 1 is encoded using the previously identified trusted
APs from the “AP information” table. APs are evaluated for

reliability by how many usable RSS values each AP has
accrued across all fingerprint records. Each identified AP is
assigned an index in the AP translation table. Fingerprints are
then reformatted into training data as to only populate one
record for each fingerprint. The RSS value to an AP from each
fingerprint record is stored under the AP’s respective column
index. If no RSS value was received from that AP, an RSS
of -100 will be stored in that cell indicating that the AP was
not reached. Once fingerprints are restructured into the new
format, they can be delivered to the model as training data.

C. Amplified Voting Scheme for Floor Differentiation

Floor differentiation is the first critical step in the online
phase of our multi-floor indoor positioning system. Our ap-
proach for this task entails an amplified voting scheme that
offers improved accuracy compared to simpler methods. To
evaluate the similarity between test samples and the train
reformatted fingerprints, we use the Euclidean distance metric.

A simple voting scheme identifies the floor with the highest
count among the best neighbors. However, our research found
that this approach is unsuitable for reliable floor determination.
In scenarios where floor differentiation relies solely on counts,
especially in edge cases, this method can lead to significant
differentiation errors. Such misclassification would result in
completely misinterpreted and incorrect user localization, un-
dermining the system’s overall reliability.

Fig. 3. Amplified voting scheme flowchart for the floor differentiation

As shown in Figure 3, the extended approach begins by
computing and sorting Euclidean distances in ascending order
between the test sample and all training samples. From these,
the 11 nearest neighbors are selected and their corresponding
floors are identified. The algorithm then polls how many
neighbors came from each floor. Then, it calculates the total
distance of neighbors for each floor by summing the distances
of its representatives among the 11 neighbors. A layered voting
scheme is applied to determine the final floor differentiation.
This scheme includes several conditions to handle edge cases:
when two floors have an equal number of votes, the floor
with the smaller total distance is chosen. If the difference in
floor neighbor counts does not exceed 4, the total distances
are factored into the floor differentiation. In cases where



a floor has at most 4 neighbors but could potentially be
the correct floor, additional criteria are applied to prevent
misclassification. If all these conditions fail to produce a
clear result, the algorithm defaults to a basic maximum voting
scheme.

D. Data Preprocessing

After floor differentiation, we apply filtering and normal-
ization techniques to refine our data and improve location
estimation accuracy.

Floor-Specific Filtering: Each floor estimation gets its
floor-filtered training dataset. This step is crucial because
RSS distributions can vary significantly between floors due
to differences in layout and signal propagation.

Normalization: We use a standard scaler to normalize the
RSS values by fitting the standard scaler on the filtered dataset
for each floor and applying the scaling parameters to normalize
the training and test samples. This can be expressed as the
following:

RSSnormalized =
RSS − µfloor

σfloor
(1)

Different floors can have distinct environmental factors
influencing RSS values, such as obstructions or distance from
APs. By standardizing RSS values relative to floor-specific
statistics (µfloor and σfloor), the impact of these floor-specific
differences is reduced, allowing for more consistent and com-
parable data across different floors. This approach enhances
the reliability of localization and floor estimation algorithms
by mitigating floor-specific signal variations.

E. User Localization Using Dynamic Nearest Neighbors

The final step in our methodology involves estimating the
user’s precise location within the classified floor. The k-NN
technique is employed for user localization; our implemen-
tation utilizes a 5-NN algorithm. This choice of k is based
on assigned k values found in similar literature[17]. The RSS
similarity metric[11] is applied as a distance function for
determining nearest neighbors. The relevance of the similarity
metric is: (a) Compute RSS similarity between the test sample
and training data, (b) Weight these computations based on the
percentile and weighting schemes.

As a component of this study, we introduce a novel “valid
neighbor” selection technique to address the challenges of
signal variability by considering distant and near reference
points as potential neighbors. The dynamic valid neighbor
selection algorithm sorts k neighbors by distance and evaluates
them iteratively. It uses two thresholds: thr for individual
distance differences and tot thr for cumulative differences.
For each neighbor, it calculates the distance difference from
the previous neighbor. If this difference is below thr and
the cumulative difference is below tot thr, the neighbor is
considered valid. The process continues until a threshold is
exceeded or all k neighbors are evaluated. This method adapts
to varying densities of reference points, efficiently excludes

Fig. 4. Dynamic neighbor selection flowchart

outliers, and can handle non-uniform distributions. The process
is illustrated in Figure 4.

It should be noted that increasing fingerprint density would
allow for more fine-grained estimations and more restrictive
thresholds, with literature expressing that increasing the num-
ber of fingerprints enhances localization performance, observ-
ing improvements through iterative comparisons of metrics
as the number of training fingerprints grew[21]. The thr and
tot thr can be adjusted to reinforce this behavior. In this
study, based on the experiments, we assign thr a value of
4 and tot thr a value of 20.

By combining these methodological components, our Wi-
Fi RSS fingerprinting system aims to provide accurate and
robust indoor positioning across multiple floors, leveraging the
unique characteristics of RSS distributions and adapting to the
specific layout of each floor.

IV. RESULTS AND DISCUSSION

This section discusses the simulation results using the
proposed localization framework. In the context of user local-
ization, the mean absolute error (MAE) measures the average
absolute difference between the predicted location and the
actual location of a user. Our analysis converts the MAE values
from pixels to meters, making our results more practical to
interpret.

A. Dataset

The collected dataset comprises RSS Wi-Fi scans (collected
fingerprints) from an engineering facility with abundant AP
coverage. To validate our findings, we collected fingerprint
data across three respective floors within this building. Each
floor exhibits varying room sizes and layouts, which allows
us to capture a diverse range of environmental conditions that
reflect the nuances of signal propagation in different spatial
contexts. The distribution of fingerprints across the floors is
shown in Table I.



TABLE I
COMPARISON OF FINGERPRINTS COLLECTED ACROSS SPARSE V. DENSE

DATASET ON DIFFERENT FLOORS

Floor Dense Fingerprints Sparse Fingerprints
#1 207 61
#2 277 98
#3 125 64

Total 609 223

B. Analysis on Floor Differentiation

In this experiment, we compared the effectiveness of a
simple voting scheme and an amplified voting scheme for
floor determination on dense and sparse fingerprint data. As
shown in Table II, for the sparse dataset, the integration
of the amplified voting scheme led to an improvement in
floor differentiation accuracy. The misclassified floor differ-
entiations under the simple voting scheme were correctly
predicted with the amplified approach, improving the accuracy
from 94.93% to 97.46%. On the dense dataset, we also saw
improvements from 99.82% to being completely accurate. This
perfect classification rate underscores the effectiveness of the
amplified voting scheme, particularly when combined with a
comprehensive fingerprinting approach.

TABLE II
COMPARISON OF ACCURACY AND MISCLASSIFICATIONS ACROSS SPARSE

V. DENSE DATASET ON ALL FLOORS

Dataset Simple Amplified
Accuracy # Misclass. Accuracy # Misclass.

Dense 0.998 1 1 0
Sparse 0.949 4 0.975 2

C. Analysis on User Localization

In this experiment, we compare the performance of k-NN
using fixed versus dynamic approaches to selecting the number
of neighbors. In the fixed scenario, exactly 5 nearest neighbors
are chosen, whereas in the dynamic scenario, the number of
neighbors ranges from 1 to 5, depending on the test data.

The analysis of the data from Tables III and IV reveals
that dense fingerprint datasets generally outperform sparse
datasets in terms of localization accuracy. Across all floors, the
dense dataset consistently shows lower average distance errors
compared to the sparse dataset, both in the fixed and dynamic
number of neighbor approaches. For example, in Table IV,
the dynamic number of neighbors yields an average error of
2.87 meters for sparse data, compared to 1.53 meters for dense
data.

Moreover, the dynamic number of neighbors approach
proves to be more effective than the fixed number of neighbors.
In both dense and sparse datasets, the dynamic approach
produces lower average distance errors (2.87 meters for sparse
and 1.53 meters for dense) compared to the fixed approach
(3.04 meters for sparse and 1.65 meters for dense). This
suggests that adapting the number of neighbors improves the
accuracy of k-NN, especially in dense environments where
signal complexity may be higher.

In conclusion, the dynamic number of neighbor selection
combined with dense fingerprinting approach offers more pre-
cise and reliable user positioning for diverse indoor environ-
ments, showing substantial improvement over sparse datasets
and fixed number of neighbors selection approach.

TABLE III
DISTANCE ERROR ON DENSE AND SPARSE FINGERPRINT DATASET USING

FIXED NUMBER NEIGHBORS IN k-NN ON DIFFERENT FLOORS

Floor Sparse error (m) Dense error (m)
#1 3.24 1.74
#2 2.80 1.52
#3 3.42 1.86

Avg. 3.04 1.65

TABLE IV
DISTANCE ERROR ON DENSE AND SPARSE FINGERPRINT DATASET USING

DYNAMIC NUMBER OF NEIGHBORS IN k-NN ON DIFFERENT FLOORS

Floor Sparse error (m) Dense error (m)
#1 2.79 1.47
#2 2.93 1.47
#3 2.90 1.77

Avg. 2.87 1.53

D. Visual Analysis for User Localization Using Dynamic
Nearest Neighbors

This section provides a visual analysis comparing the lo-
calization results of dynamic and fixed neighbor selection
methods on sparse and dense data. The visual representations
of the sparse and dense datasets in Figures 5 and 6 reveal
a notable benefit from implementing the dynamic number of
neighbors selection approach. This improvement is visible in
both conditions where there exists a limited and extensive
amount of fingerprints available in the dataset. In scenarios
with fewer reference points, the inclusion of neighbors far
from the test sample can introduce major inaccuracies in the
user localization process. Meanwhile, in the context of dense
fingerprinting data where we have an abundance of reference
points, there is still a possibility that relatively distant points
could be selected as neighbors due to the unpredictable nature
of RSS, potentially introducing minor inaccuracies in the esti-
mation process. The dynamic neighbor selection mitigates this
issue by selectively choosing comparable sequential neighbors
(thr) as well as restricting neighbors once the total distance
(tot thr) threshold is exceeded. This adaptive behavior en-
sures that even in a dense fingerprinting environment, where
the impact of slightly mismatched neighbors might be less
severe, we still maintain optimal accuracy by focusing on the
most relevant data points.

V. CONCLUSION

This research explores techniques for enhancing multi-floor
indoor positioning accuracy using Wi-Fi RSS fingerprinting.
Our primary contributions include an amplified voting scheme



Fig. 5. Comparison of fixed v. dynamic neighbor selection in sparse
fingerprinting environment

Fig. 6. Comparison of fixed v. dynamic neighbor selection in dense finger-
printing environment

for floor differentiation and a dynamic “valid neighbor” selec-
tion approach for user estimations within the k-NN framework.
These methodologies, coupled with floor-specific filtering and
normalization processes, address the unique challenges posed
by signal variability across different levels of a building.

To validate our approach, we assembled a comprehensive
dataset comprising 609 Wi-Fi fingerprints, meticulously col-
lected across three floors of an engineering facility. This
diverse collection, encompassing varied room dimensions and
layouts, provided a robust foundation for assessing our algo-
rithms’ efficacy in real-world, multi-story environments.

Experimental results demonstrated that the amplified voting
scheme approach achieved a 2.5% improvement in floor differ-
entiation for the sparse dataset and complete accuracy for the
dense dataset, highlighting the effectiveness of our amplified
voting scheme compared to the simple voting scheme. Further-
more, the use of a dynamic number of neighbors in the k-NN
algorithm resulted in an average distance error of 1.53 meters
for the dense dataset. The increased robustness of our method
is evident, as dynamic nearest neighbors and a larger set of
training fingerprints enable more accurate real-time neighbor
inclusion determinations, surpassing the limitations of fixed
neighbor counts and fewer fingerprints.

For future work, incorporating additional data streams could

enhance the system’s capability to track user movement across
floors. This multi-modal approach could extend the application
of indoor localization to more dynamic and complex scenarios.
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