
Detecting and Preventing Adversarial Attacks Using
Trapdoor Architecture

Benyamain Yacoob, Andre Price, Eyiara Oladipo, Ethan Scheys, and Mustafa Saed

Department of Electrical & Computer Engineering & Computer Science
University of Detroit Mercy
Detroit, MI, United States

(yacoobby, pricean2, oladipea, scheysej, saedma)@udmercy.edu

Abstract—As artificial intelligence (AI) becomes more in-
tegrated into our daily lives through advancements like au-
tonomous vehicles and generative artificial intelligence (GAI), it
is important to find ways to improve the security of AI models.
Adversarial attacks work by injecting misleading data into train-
ing models, which can then be used to manipulate their outputs
and produce undesirable results. For example, an adversarial
attack could involve injecting malicious or altered X-ray scans
into a model that is being trained to detect abnormal nodules.
However, trapdoor architecture can be a solution as it is a defense
mechanism that seeks to detect and stop adversarial attacks using
honeypots. Our research sought to measure the effectiveness
of the trapdoor architecture against these adversarial attacks:
momentum iterative method (MIM), MadryEtAl, and L-BFGS
on the MNIST and CIFAR-10 datasets. The performance of the
model was evaluated against attack success rate (ASR), trapdoor
success rate, detection success rate at the 5% false positive rate
(FPR), and the area under the curve score (AUC ROC). The
majority of our test instances on the target labels for these attacks
produced findings that were close to 100% for both detection
success rate at 5% FPR and the AUC score. From these results,
it can be concluded that the trapdoor architecture is a promising
defense system that can bring safe practices for the protection
of AI models to the forefront of AI safety.

Index Terms—honeypots, adversarial attacks, machine learn-
ing, neural networks, artificial intelligence, trapdoor defense

I. INTRODUCTION

In the fields of machine learning and deep learning exists
a class of techniques called adversarial attacks. By making
subtle modifications to input data, these attacks have the
potential to cause AI or machine learning models to generate
inaccurate classifications, ultimately undermining the integrity
of the system or model. These attacks manifest in various
diverse forms: input perturbation attacks, targeted attacks, non-
targeted attacks, transfer attacks, evasion attacks, poisoning
attacks, gradient-based attacks, and zero-day attacks, with the
most detrimental being poisoning attacks [1]. Thus, it is of
concern for models to be deployed within a security-conscious
domain to prevent the impact and effects of these attacks.
There is no guarantee against stopping these attacks, but de-
fense layers can be created to account for them. Research can
further support this notion by designing a system similar to that
of a “honeypot”, intently placing vulnerabilities that are easy
to find and enticing the attacker to feed adversarial examples
into the model [2]. Certain input patterns are accounted for

in the trapdoor model that deviates from the non-protected
model’s input patterns, with different parameters being used
for the optimization function, turning on the alarm “trigger”
for the trapdoor-enabled defense. By establishing this form
of threshold assessment, injected attacks become significantly
easier at detecting and identifying the adversarial examples
within the original dataset, removing them entirely before the
model retrains on these malicious input data. The question
to be raised is can the attacker become aware of the input
patterns that serve as triggers to alert the trapdoor defense
mechanism and be able to unlearn them? Backdoor attacks
hold a similar approach to that of trapdoor but the latter
prevents the misclassified examples from becoming included
in the trapdoor-protected models that hold the target labels.
Thereby, unlearning the triggers is possible but would bring
no foreseeable benefit to the attacker as the architecture of
trapdoor contains a safety mechanism that prevents bad data
from being used for training instances. By pre-emptively
placing a honeypot within the model, the act of finding its
vulnerabilities is misguided into a controlled environment
where a defense response is planned to catch it before harming
the model’s classification integrity. This method is far superior
to naturally finding a vulnerability that the trapdoor-enabled
defense never accounted for.

A. What Are Adversarial Attacks?

Adversarial attacks are malicious attacks on data that can
produce misclassification in machine learning. Neural net-
works are the most vulnerable to these types of attacks due
to the increased integration of artificial intelligence within
streamlined technologies [3]. As a result, new attacks are being
developed, along with defense mechanisms to counter them.
The attack is usually carried out during certain phases of when
following the machine learning model deployment cycle. In
more detail, these injected attacks can take precedence in the
training stage, the testing phase, or when the model is in the
process of being deployed.

Adversarial attacks can cause disruption in the machine
learning model selection in the training stage by removing
data attributes from the original dataset, causing the evaluation
metric of the target model to see a decrease in performance.
The basis of creating intelligent models requires that data is



available to researchers and that the data can be generalized
in a model to fit a specific goal or use case. Finding data
that suits those needs is difficult to come by, and that is the
reason these injected attacks are wasting effective time and
cost of resources gathered by AI researchers. A representative
dataset takes time to gather and requires patience to utilize
experimental data that would be beneficial to use in a dataset.

Another aspect of the training stage that can cause the
misclassification of a machine learning model is manipulating
input features. When researchers gather data, such as for the
feature selection processes, they consider relevant features
or data labels that best reach their goal. However, when
these models are susceptible to attacks capable of flipping
these labels with other input attributes, such a goal is made
unattainable. Such an attack can cause severe damage to the
integrity of the classification of labels outputted by the model.
Therefore, the likelihood of misclassification taking place is
dramatically more apparent than before, caused by the change
in the data labels that are used by these neural networks to
create computed outputs and would indicate a change in how
the model is carrying out its decisions to classify the target
label.

The testing stage is also susceptible to the disruption that
adversarial attacks can cause. But this attack can be in the
form of white-box attacks or black-box attacks. The former
has prominent access to the parameters, the algorithms, and the
structure of the model [4]. These vital components are prone
to creating a more dangerous outcome for harming the model.
It allows adversaries to have a degree of control within the
model system and to use that opportunity to deceive the model.
The latter emphasizes utilizing local substitute models, created
to mimic the target model it intends to harm [4]. It is made
possible by sending input data to the target model, observing
its predictions, and then using those observations to understand
the behavior of the model to find its vulnerabilities. The
process of navigating through this is often coined as the model
inversion method, or to reverse engineer the target model to
extract sensitive information on the data it was trained on.

The following subsections will cover the scenarios in which
adversarial attacks occur, as well as the defense mechanisms
that can be implemented to protect AI models against them. It
is important to note that the robustness of these attacks can be
addressed through this simple approach given that a model has
accounted for adversarial examples to potentially be present
at any moment during its training, testing, or deployment
process: Malicious input data is fed into the model, but prior to
that, random perturbations should be added to these adversarial
examples. These perturbations should minimize noticeability
to prevent detection while still maintaining effectiveness [5].
Then, the model should correctly classify the target prediction
even with the presence of adversarial data, signifying how
injected attacks do not necessarily gravitate toward implement-
ing complex defense architectures.

B. Scenarios of Adversarial Attacks and Their Effects

Misclassification in machine learning models has increas-
ingly adverse effects on the information given by a de-
scribed model, especially in regard to classification, voice
recognition, malware, autonomous vehicles, and more in our
technologically advanced society. Take a model related to text
classification and informational analysis, as commonly seen
in artificial intelligence. An adversary can insert, alter, or
substitute words to mislead the model into providing false or
inaccurate information or to make the model believe that the
misclassified label is correct.

Examining another application that has a growing presence
in our lives is voice recognition. Using a voice recognition
system, the vibrations are turned into an electrical signal which
is then transcribed into a digital signal. Adversarial attacks
can lead to completely incorrect data transcription and provide
major consequences for voice recognition software and voice
assistants. Voice recognition’s presence in voice biometrics
could also provide another target for adversarial attacks, harm-
ing a person’s ability to authenticate their identity.

Adversarial attacks have the inherent aptitude to be clas-
sified on a large scale, illustrated by whether their outcomes
are more benign in nature or provide a more serious security
risk. The important safeguarding of deep learning or machine
learning models stems from the use of a robust security system
to prevent further issues from the ever-growing adversarial
attacks.

C. Real-World Implications of Adversarial Attacks

With an abundant human dependence on technology and
their respective industries, the risk of adversarial attacks on
deep learning or machine learning models increases without
the use of a proper security system or domain. Human cul-
ture and business strive to continue the societal inclination
of storing data and information within systems or servers.
However, this makes the data vulnerable to adversarial attacks
and potential privacy concerns.

Doctors and nurses rely on computer medical records to
keep track of a patient’s medical history, diagnoses, and
prognoses. The importance of security is illustrated clearly
because adversarial attacks could manipulate the sensitive
information present in these records, potentially putting the
patient’s privacy and health at risk. The scalability of this
threat is more rambunctious given that the dependence on
technological devices to complete job-related tasks has been
set as the standard in the work industry.

Autonomous vehicles are also a large step in our ad-
vancements in both the automotive and AI industries. These
vehicles, however, are no safer than another mechanism or
computer without a defensive apparatus safeguarding them
from adversarial attacks that can lead to catastrophic accidents
or injuries.

Although adversarial attacks do constitute a threat today,
there are a large number of defense mechanisms that have
been created to counter their disruptive methods. Additionally,



with every new attack created researchers and developers are
working to create defenses against them.

D. Proposition of Defense Mechanisms Against Adversarial
Attacks

Defense mechanisms against adversarial attacks span from
changing the model or data being used to be more robust,
to directly attacking the adversarial attacks. This section will
look at some of the defense mechanisms used to decrease the
effectiveness of the attacks: modifying the data, modifying the
model, auxiliary tools, backdoor defenses, and using attacks
for defense.

1) Modifying Data: This refers to the data that is changed
in the training stage or the input that is changed in the testing
stage. There are many different data-modifying strategies,
these consist of adversarial training, gradient hiding, blocking
the transferability, and data compression.

2) Adversarial Training: Adversarial training is when ad-
versarial samples, created by adding tiny perturbations to the
input samples of the model [6], are introduced into the training
dataset. This trains the desired model on the legalized samples
and by doing so, the model is trained to detect the faulty
data, reducing the misidentification that an adversarial attack
provides. Another way to use adversarial training and increase
the robustness of a model is by punishing the misclassified
adversarial samples. Although it may be considered the most
effective defense strategy against adversarial attacks, it has
its limitations because of how time-consuming it would be to
train a model on all adversarial samples that exist [7].

3) Gradient Hiding: This is a relatively simple, but po-
tentially easily fooled method for defense against gradient-
based attacks and adversarial crafting methods such as the fast
sign gradient method (FGSM) [8]. These attacks leverage how
models learn, otherwise known as gradients. By hiding the gra-
dient from the adversaries, the models are non-differentiable
from each other, thus rendering the attack useless.

4) Blocking Transferability: This involves blocking the
ability to transfer adversarial samples from one network to
another. The main idea of implementing a transfer-blocking
defense mechanism is to add a new “NULL” label to the
dataset and classify it as such by training the model to resist
adversarial attacks. Doing this requires the initial training tar-
get classifier, computing “NULL” probabilities, and adversarial
training. This is believed to be the most effective method
against adversarial attacks because it resists the attacks and
does not decrease the accuracy of the classification for the
original data.

5) Data Compression: This is a JPG compression method,
that is effective against FGSM attacks and DeepFool attacks
[9]. Unfortunately, this defense mechanism is not as power-
ful against higher-level attacks like the Carlini and Wagner
attacks. While this method can be used with decent effective-
ness, the amount of compression that is needed can tend to
decrease the accuracy of the original classification.

6) Backdoor Defense: These attacks can involve the inser-
tion of malicious payloads into a machine-learning model. The

payload is designed to trigger a specific behavior when the
model is presented with a specific input pattern [10]. The goal
of these attacks is to manipulate the model’s output without
being detected, effectively ruining the classification model.
Defense against these attacks includes blind backdoor removal
and post-backdoor removal.

7) Blind Backdoor Removal: This involves the suppression
or removal of the backdoor to maintain a clean input. An
important note is that this method can be used both offline and
online, making it a versatile defense mechanism. A downside
to blind backdoor removal is that this method is unable
to tell the backdoored model from a clean model. Blind
backdoored removal can be implemented even if the presence
of a backdoor is unknown.

8) Post Backdoor Removal: This involves the removal of
the backdoor after its detection. Many of the fixes require re-
training the model or fine-tuning the model using the corrupted
data to correct itself where the backdoor attempted to poison.
This method can lead to a decrease in the accuracy of the
model as it is uncommon for the reverse-engineered trigger to
not be the same as the actual trigger.

9) Attacking the Adversarial Attacks: Until now, every
defense mechanism mentioned protects the model by changing
itself or hiding aspects from being accessed. Other defenses
target how adversarial attacks work and aim to prevent them
from manipulating the data. These work best on attacks that
are older as there is more research available on them.

10) Hedge Defense: This is a method that involves adding
random noise to the input data to make it more difficult for an
attacker to create adversarial samples. The idea behind this
defense is that by adding random noise to the input data,
the attacker will struggle to find the optimal perturbation to
create the sample. This works best against older and widely
researched attacks as well.

E. Paper Goals

As mentioned above, adversarial attacks can pose a serious
threat. As our world continues to adapt to new AI tech-
nologies, it is important that security measures can develop
alongside improvements in technologies. This is because ad-
versarial attacks are constantly evolving and new techniques
are constantly being developed. If security measures do not
keep up with these developments, then AI systems will be
vulnerable to attacks. This could have serious consequences,
such as financial losses, damage to reputation, or even physical
harm. Therefore, security researchers and AI engineers must
work together to develop effective defenses against adversarial
attacks.

The goal of this research is to evaluate the effectiveness
of the trapdoor architecture as a defense mechanism against
adversarial attacks. Previous research has shown that trapdoor
can be effective against some types of adversarial attacks but
it is not clear how well it will perform against a variety of
attacks. This research will use adversarial attack methods of
the momentum iterative method (MIM), MadryEtAl, and L-
BFGS on the MNIST and CIFAR-10 datasets to evaluate how



well the trapdoor defense system performs against them. The
models will be evaluated against metrics such as the attack
success rate (ASR), trapdoor success rate, detection success
rate at the 5% false positive rate (FPR), and the area under the
curve score (AUC ROC). The results of this research will help
determine whether trapdoor is a viable defense mechanism for
the protection of potential general-purpose AI models.

In addition, following past research, we hope to expand the
current capabilities of the trapdoor architecture and honeypots
by testing adversarial attacks on other datasets. This will help
to better understand the strengths and weaknesses of these
security measures and develop new ways to improve them.
By testing adversarial attacks on a variety of datasets, we can
guarantee that our security measures are effective against a
wide range of threats. This is important because attackers are
constantly developing new ways to exploit vulnerabilities, so
security measures are placed in trapdoor to account for them.

II. METHODOLOGY

Our work is based on past work that has been published.
Their goal was to evaluate how well the trapdoor defense
mechanism can perform when an AI model is under an adver-
sarial attack. The experimental conditions of the parent paper
were closely replicated to ensure that the following additions
of injected attacks are compatible with their codebase, in hopes
of using this paper as supplementary research to continue eval-
uating the effectiveness of trapdoor. Additionally, challenges
arose when refactoring the codebase to be compatible with
the current version of the respective Python packages that
were used as the foundation of the project architecture, notably
“CleverHans” and “Tensorflow”. Dependency migrations were
necessary to conduct the findings that we had, and therefore,
the current repository, housed on “GitHub”, prevents future
researchers from being confronted with the issue of a non-
functional architecture. In respect to what was mentioned
earlier, the framework used in this paper is shown in Fig.
1. As the original founders of this defense system had put it,
the target labels chained to the trapdoor defense are chosen
as the labels to defend, with each target label having their
own personalized defense strategies integrated into the model.
From there on, the model is in the deployment stage, and
activation signatures are applied to each distinct trapdoor. An
adversary example trial is run with internalized access to the
model, simulating a backdoor weakness that the attack makes
use of. Once the attack is injected, iterative comparisons are
made between the neuron activation signatures of each input
to the trapdoor activation signatures, identifying their absolute
differences and trapdoor protecting the original target labels
from the attack. A sample of what a label looks like with a
trapdoor defense layer present can also be seen in Fig. 2.

if method == "mim":
mim = attacks.MomentumIterativeMethod

(wrap, sess=sess)
adv_x = mim.generate_np(test_X, eps=

eps, eps_iter=eps_iter, nb_iter=5,

Fig. 1: Trapdoor Defense Mechanism Workflow

Fig. 2: Illustration of Sample Trapdoor Examples in Defense
With Varied Mask Ratios

clip_min=clip_min, clip_max=
clip_max, y_target=y_tgt)

elif method == "madry":
madry = attacks.MadryEtAl(wrap, sess=

sess)
adv_x = madry.generate_np(test_X, eps

=eps, eps_iter=eps_iter, nb_iter
=10, clip_min=clip_min, clip_max=
clip_max, y_target=y_tgt)

elif method == "lbfgs":
lbfgs = attacks.LBFGS(wrap, sess=sess

)
adv_x = lbfgs.generate_np(test_X,

y_target=y_tgt, batch_size=
batch_size, binary_search_steps=5,
max_iterations=50, initial_const

=0.1, clip_min=clip_min, clip_max=
clip_max)

These attacks aim to create adversarial examples by per-
turbing the input data (testX ) while considering specific
parameters such as the maximum perturbation (eps), number
of iterations (nbiter), and target labels (ytgt). The resulting
advx represents the perturbed inputs designed to trigger mis-
classification.

III. RESULTS AND DISCUSSION

Across all three attacks implemented, the trapdoor architec-
ture was able to protect the original target labels before the
adversarial attack. To evaluate the effectiveness of the trapdoor



architecture, the model randomly selected three target labels
for evaluation. The evaluation metrics used were the attack
success rate (ASR), the detection success rate at 5% false
positive rate (FPR), the area under the curve score (AUC ROC)
and the success of trapdoor. The detection success rate is the
effectiveness of the injected attack in adding perturbations that
successfully created an adversarial example that would cause
the model to misclassify the original trapdoor-embedded target
label. However, the ASR only guarantees that the adversarial
attack was successfully injected, with its own mechanisms
of adding randomness, but the measure of how well those
perturbations bypassed the trapdoor defense mechanism would
be quantified through the detection success rate. The more
representative interpretation of the ASR metric would be that
the three adversarial attacks with which we experimented were
able to, for the most part, introduce their perturbations in the
“honeypot” model. However, the high success rate does not
have a direct relationship to bypassing the security layer that
trapdoor provides for its models. Analyzing both the AUC
and detection success rates can allow us to gather a more
accurate and representative conclusion of the effectiveness of
the trapdoor architecture in protecting its training or test labels
from these adversarial attacks.

With a confidence of 95% at the 5% FPR, the detection
success rate tells us how well the model is in detecting the
difference between the adversarial target label and the original
target label. Another measure that provides similar information
on the performance of the model after the injected attacks
is the AUC score. Lastly, the trapdoor success metric just
provides a glimpse of understanding if the current architecture
is compatible with protecting its chosen dataset, applying its
defense mechanism onto the dataset’s target labels.

The proceeding section will go into detail on the results and
our takeaways from these evaluation metrics for the attacks
and datasets tested.

A. Momentum Iterative Method (MIM)

With the MNIST dataset, MIM was able to make the first
target label give a trapdoor success output of 0.998, or 99.8%,
with an ASR of 0.0625, or 6.25%. The ASR quantity gives
insight as to how much of the injected attack’s perturbations
were added to the target. Despite this, the detection success
rate at 5% FPR was 0.75, or 75%. Although the MIM attack
had low injection success, its perturbations were effective
enough to fool the trapdoor architecture, as it created a sce-
nario where the model was not 100% confident in guaranteeing
that the target labels were not affected. Moreover, having an
ASR output greater than 5% is great enough to elicit further
experimentation and research to decrease this metric.

The AUC measure for the first target label showed a 6.25%
difference, indicating that the model struggled to distinguish
between the original target label and the adversarial example.
The remaining two target labels had similar results, with an
ASR of 0% and 0.0312%, respectively. However, their gradient
descent loss maximization techniques were not capable of
amplifying the model’s loss, thereby concluding that injected

Fig. 3: Comparison of Loss Function Visualization Between
Normal and Trapdoored Models

attacks do not guarantee success to generating adversarial
examples for target labels from the same dataset. As shown in
Fig. 3, the trapdoor defense layer finds a new local minimum
for the model, one that is convenient for the attack to take
advantage of and increase.

With the CIFAR-10, although all three labels had a high
ASR, at 100%, 99.3%, and 98.6%, the AUC ROC measure
and detection success rate at 5% FPR was 100% for all three
target labels. Therefore, the model was able to distinguish the
difference between the trapdoor and adversarial target labels
with 100% confidence.

B. MadryEtAl

With the MNIST dataset, MadryEtAl had a consistent ASR
of 78.12%, 78.12%, and 71.88%. Similar to the CIFAR-10
dataset with the MIM attack, the AUC scores and detection
success rates were approximately 100% for all three target
labels. This shows us a consistent theme, where a high ASR
does not necessarily affect the model’s ability to distinguish
between the original target labels and the adversarial attack
target label.

The CIFAR-10 dataset also showed very similar results,
with an ASR of 100% for each target label, along with a
100% detection success rate and AUC score. We speculate
that the lower attack success rates on the MNIST dataset
might be a result of the nature of the data, with the data
being homogenous, featuring very similar layouts. In con-
trast, heterogeneous data, such as that found in CIFAR-10,
benefits from perturbations due to the variations in pixels
concerning the images being analyzed. These variations make
it more challenging to determine whether a specific pixel
was perturbed or not. For instance, the MNIST dataset, with
its 2-theme color layout, makes it easier to comprehend the
differences between adversarial and original target labels. This
ease of differentiation is attributed to the dataset’s limited
variation compared to CIFAR-10, which consists of multiple
images across various categories, including animals, inanimate
objects, and diverse coloring schemes or environments.

C. L-BFGS

Our last attack, the limited-memory BFGS attack had a
higher ASR for the MNIST dataset, with 100% success for the



Fig. 4: Success of Oracle Signature Attack With Random
Neuron Sampling and Multiple Trapdoors

Fig. 5: Success of Trapdoor Vault Attack With Random
Neuron Sampling and Multiple Trapdoors

three target labels. The detection success rates and AUC scores
were consistently 100% for the three labels. The CIFAR-10
shared similar findings, but with the last two target labels
showing a reduction in the detection success rate at 96.875%,
and AUC scores of 97.75% and 99.19%, respectively. From
the findings provided by the parent paper, another avenue
they explored was randomizing the activation signatures of
the neurons as seen in Fig. 4 and Fig. 5. Their goal was to
reduce the success rate of these specific adversarial attacks
and also consider adding trapdoor layers on multiple target
labels. They found the attacks to be least effective with this
approach, and therefore, concluded that the architecture itself
and randomizing neurons helped to mitigate the danger of
adversarial attacks.

IV. CONCLUSION

Through our findings, we were able to test three new adver-
sarial attacks on the trapdoor architecture to understand how
well the defense system can protect its AI model from being
exploited. We implemented attacks such as MIM, MadryEtAl,
and L-BFGS, all of which exploited the intentionally placed
honeypot within the system to understand how well can
trapdoor maintain its model integrity after being challenged by
numerous types of injected attacks. From the experiments that
we conducted, we found the model’s resilience in maintaining
its integrity to be the worst against MIM. Its detection success
rate at the 5% FPR was 0.75, with an AUC score of 0.93, and
an ASR of 0.0625. Our approach considered implementing
these adversarial attacks on CIFAR-10 and MNIST, two widely

recognized image classification datasets. Our codebase made
use of the existing trapdoor architecture that was modified
to answer our goals and questions. The results from our
experiment shed light on the importance of considering safe,
ethical AI practices as intelligence systems are developed, with
the trapdoor defense mechanism as an example, to prevent
malevolent forces such as adversarial attacks from causing
chaos.

V. FUTURE WORK

Although we explored three new adversarial attacks that the
founding paper of this research did not address, we encourage
those who are reading to inject new attacks, and further test
the resilience of the trapdoor architecture. It would benefit
research to indicate how well-suited trapdoor is to the task
against multiple attacks. These findings would not only signify
the general usability of the system within everyday functions
but would also strive to improve the architecture. Another
avenue of exploration that can be considered is integrating
other external image classification datasets. If trapdoor can
be adapted to different types of data and maintain consistent
metrics, the results can show how scalable the protection
system is. Therefore, considering these two approaches would
conclude how trapdoor can protect machine learning models
from different adversarial attacks, and be able to protect
different features of information. The source code for this pa-
per can be found here: https://github.com/Benyamain/trapdoor-
extended.

VI. ACKNOWLEDGMENTS

We extend our gratitude to the individuals who contributed
to the successful completion of this research. The collaborative
efforts of the research team, including Benyamain Yacoob,
Eyiara Oladipo, Ethan Scheys, and Andre Price were instru-
mental in conducting the research, analyzing the results, and
shaping the outcomes. We are also grateful for the invaluable
guidance and insightful revisions provided by Dr. Mustafa
Saed, which greatly improved the quality of this research. His
expertise and support were essential in perfecting our work.
We would also like to express our gratitude to the Department
of Electrical and Computer Science at the University of Detroit
Mercy for providing the essential resources and environment
for this research. This project would not have been possible
without the collective effort of these individuals and institu-
tions, and we are thankful for their contributions.

REFERENCES

[1] R. S. Siva Kumar et al., “Adversarial machine learning-industry per-
spectives,” 2020 IEEE Security and Privacy Workshops (SPW), Dec.
2020. doi: https://doi.org/10.1109/spw50608.2020.00028.

[2] N. Carlini, “A Partial Break of the Honeypots Defense to Catch Ad-
versarial Attacks,” 2020. Accessed: Oct. 09, 2023. [Online]. Available:
https://arxiv.org/pdf/2009.10975.pdf.

[3] X. Gong et al., “Defense Resistant Backdoor Attacks Against Deep
Neural Networks in Outsourced Cloud Environment,” IEEE Journal on
Selected Areas in Communications, vol. 39, no. 8, pp. 2617–2631, doi:
https://doi.org/10.1109/JSAC.2021.3087237.

https://github.com/Benyamain/trapdoor-extended
https://github.com/Benyamain/trapdoor-extended


[4] H. Xu et al., “Adversarial Attacks and Defenses in Images,
Graphs and Text: A Review,” International Journal of Automa-
tion and Computing, vol. 17, no. 2, pp. 151–178, 2020, doi:
https://doi.org/10.1007/s116330191211x.

[5] W. Jin et al., “Adversarial attacks and defenses on graphs,”
SIGKDD Explor. Newsl., vol. 22, Art. no. 2, 2021, doi:
https://doi.org/10.1145/3447556.3447566.

[6] S. Qiu, Q. Liu, S. Zhou, and C. Wu, “Review of artificial intelligence
adversarial attack and defense technologies,” Applied Sciences, vol. 9,
Art. no. 5, 2019, doi: https://doi.org/10.3390/app9050909.

[7] S. Zhang, H. Gao, and Q. Rao, “Defense Against Adversarial
Attacks by Reconstructing Images,” IEEE Transactions on
Image Processing, vol. 30, pp. 6117–6129, 2021, doi:
https://doi.org/10.1109/TIP.2021.3092582.

[8] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” in International Conference on Learning Repre-
sentations, 2015. Available: https://arxiv.org/abs/1412.6572

[9] C. Guo, M. Rana, M. Cisse, L. van der Maaten,”Countering adver-
sarial images using input transformations.” ArXiv: 1711.00117, 2017.
Available: https://arxiv.org/pdf/1711.00117.pdf

[10] Y. Gao et al., “Backdoor attacks and countermeasures on deep learning:
A comprehensive review,” CoRR, vol. abs/2007.10760, 2020, Avail-
able: https://arxiv.org/abs/2007.10760.


	Introduction
	What Are Adversarial Attacks?
	Scenarios of Adversarial Attacks and Their Effects
	Real-World Implications of Adversarial Attacks
	Proposition of Defense Mechanisms Against Adversarial Attacks
	Modifying Data
	Adversarial Training
	Gradient Hiding
	Blocking Transferability
	Data Compression
	Backdoor Defense
	Blind Backdoor Removal
	Post Backdoor Removal
	Attacking the Adversarial Attacks
	Hedge Defense

	Paper Goals

	Methodology
	Results and Discussion
	Momentum Iterative Method (MIM)
	MadryEtAl
	L-BFGS

	Conclusion
	Future Work
	Acknowledgments
	References

