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• Adversarial attacks work by injecting misleading data into training models, which can manipulate the output 

and produce undesirable results

• Trapdoor architecture works by using honeypots as a defense mechanism to seek, detect, and stop 

adversarial attacks

• The codebase currently only supports MNIST and CIFAR-10 dataset and six different attacks: Carlini Wagner, 

Basic Iterative Method, Fast-Gradient Sign Method, Momentum Iterative Method, MadryEtAl, L-BFGS.

• We are looking to measure the effectiveness of the Trapdoor architecture on the MNIST and CIFAR-10 

datasets with following adversarial attacks:

• Momentum Iterative Method (MIM)

• MadryEtAl

• L-BFGS

• Measures of success: Attack success rate (ASR), Perturbating size, and Confidence score

Note: We revised the attacks from our original presentation

Project Summary



Original source code: https://github.com/Shawn-Shan/trapdoor

Visualization of the datasets (MNIST and CIFAR respectively) can be seen below:

Context From the Original Paper



• Adversarial attacks work by injecting misleading data into training models, which can manipulate the 

output and produce undesirable results

• In the testing stage, attacks can be white-box or black-box, targeting model parameters or using 

substitute models.

• Defense mechanisms are available, including accounting for adversarial examples and adding random 

perturbations to mitigate attacks.

Source: https://jwcn-
eurasipjournals.springeropen.com/articles/10.1186/s136
38-020-01775-5

Adversarial Attacks



Progress

- We were able to replicate the original environment of the paper

- We ran the three desired adversarial attacks - Momentum Iterative Method (MIM), MadryEtAl and L-BFGS 
and receive data related to our measures of success

- We tuned the hyper-parameters to achieve better trapdoor success rates

- We evaluated the results from each of our attacks to gauge the effectiveness of the trapdoor architecture

Overview

- MIM – Description, Uses, and Results

- MadryEtAl– Description, Uses, and Results

- L-BFGS– Description, Uses, and Results

- Code structure

- Future works

Progress and Presentation Overview



MIM is an improvement on the FGSM attack

Summary: The FGSM attack aims to reduce the accuracy of a machine 

learning model by adding carefully crafted perturbations to the input 

data.

FGSM works by taking the gradient of the loss with respect to the 

input data and then modifying the input data to maximize that loss. In 

other words, it is adding perturbation to the input data in a way that 

affects the model's output.  FGSM attacks seem unchanged to the 

human eyes, but can make the model misclassify the input.

Kurakin et al. [1] introduced the basic iterative method (BIM) by 

repeating FGSM for n steps. BIM usually results in a higher attack 

success rate than FGSM. [2]

Momentum Iterative Method (MIM)



The MIM was developed by the researchers sited in [3]

The researchers proposed a broad class of momentum iterative 

gradient-based methods to generate adversarial examples, which 

can fool white-box models as well as black-box models.

Momentum Iterative Method (MIM)



MIM Results

MNIST Dataset

Randomly Selected 3 Target Label 

for Evaluations:

Target: 7
Trapdoor Success: 0.998

Attack Success: 0.0625

Detection Success Rate at 0.05 FPR: 0.75

Detection AUC score 0.937500

Target: 1
Trapdoor Success: 0.999

Attack Success: 0.0000

Target: 0
Trapdoor Success: 1.0

Attack Success: 0.0312

CIFAR-10 Dataset

Randomly Selected 3 Target Label 

for Evaluations:

Target: 7
Trapdoor Success: 0.975

Attack Success: 1.000

Detection Success Rate at 0.05 FPR: 1.0

Detection AUC score 1.000

Target: 1
Trapdoor Success: 0.993

Attack Success: 1.000000

Detection Success Rate at 0.05 FPR: 1.0

Detection AUC score 1.000

Target: 0
Trapdoor Success: 0.986

Attack Success: 1.000

Detection Success Rate at 0.05 FPR: 1.0

Detection AUC score 1.000



• The MadryEtAI method is a method that focuses on training machine learning models against 

adversarial attacks.

• This is done by generating adversarial examples and placing them within the input dataset.

• The model is then exposed to the adversarial examples and learns to become more resilient against 

adversarial attacks.

MadryEtAl



MadryEtAl Results

MNIST Dataset

Randomly Selected 3 Target Label 

for Evaluations:

Target: 7
Trapdoor Success: 0.998

Attack Success: 0.7812 

Detection Success Rate at 0.05 FPR: 1.0

Detection AUC score 1.00000

Target: 1
Trapdoor Success: 0.999

Attack Success: 0.7812

Detection Success Rate at 0.05 FPR: 1.0

Detection AUC score 0.995600

Target: 0
Trapdoor Success: 1.0

Attack Success: 0.7188

Detection Success Rate at 0.05 FPR: 1.0

Detection AUC score 1.000000

CIFAR-10 Dataset

Randomly Selected 3 Target Label 

for Evaluations:

Target: 7
Trapdoor Success: 0.975

Attack Success: 1.000

Detection Success Rate at 0.05 FPR: 1.0

Detection AUC score 1.000

Target: 1
Trapdoor Success: 0.993

Attack Success: 1.000000

Detection Success Rate at 0.05 FPR: 1.0

Detection AUC score 1.000

Target: 0
Trapdoor Success: 0.986

Attack Success: 1.000

Detection Success Rate at 0.05 FPR: 1.0

Detection AUC score 1.000



• The Limited-memory Broyden-Fletcher-Goldfarb-Shanno method is a non-linear gradient-based 

numerical optimization algorithm designed to minimize the number of perturbations added to images.

• Its main purpose as an attack, is to generate adversarial examples. There are a few ways that L-BFGS 

generates these adversarial examples. Some examples of these are seen in the following:

• Objective Function

• Perturbation

L-BFGS: Limited-memory BFGS



L-BFGS Results

MNIST Dataset

Randomly Selected 3 Target Label 

for Evaluations:

Target: 7
Trapdoor Success: 0.998

Attack Success: 1.0000

Detection Success Rate at 0.05 FPR: 1.0

Detection AUC score 1.00000

Target: 1
Trapdoor Success: 0.999

Attack Success: 1.0000

Detection Success Rate at 0.05 FPR: 1.0

Detection AUC score 1.000

Target: 0
Trapdoor Success: 1.0

Attack Success: 1.00000

Detection Success Rate at 0.05 FPR: 1.0

Detection AUC score 0.999023

CIFAR-10 Dataset

Randomly Selected 3 Target Label 

for Evaluations:

Target: 7
Trapdoor Success: 0.975

Attack Success: 1.000

Detection Success Rate at 0.05 FPR: 1.0

Detection AUC score 0.992676

Target: 1
Trapdoor Success: 0.993

Attack Success: 1.000000

Detection Success Rate at 0.05 FPR: 0.96875

Detection AUC score 0.977539

Target: 0
Trapdoor Success: 0.986

Attack Success: 1.000

Detection Success Rate at 0.05 FPR: 0.96875

Detection AUC score 1.000



• The code is tested on Python 3.6.8

• The list of packages and their versions  to replicate the project within your own environment can be seen 

below

• To replicate your own environment, create a virtual environment through Python's documentation or 

download Anaconda

Dependencies



• To train a trapdoor model, type the following in the Terminal

o "python inject_trapdoor.py --dataset mnist"

o "python inject_trapdoor.py --dataset cifar"

o A results file shall be outputted which holds the configurations of creating both the 

models, as well as the extracted model without the additional information of the 

configurations

The source code can be found here: https://github.com/Benyamain/trapdoor-extended

Code Implementation and How to Train a Trapdoor Model



• To run attack and detection, type the following in the Terminal

o "python eval_detection.py --dataset mnist --attack bim"

o "python eval_detection.py --dataset cifar --attack bim"

o The selection for what attack you want to use on the specified dataset can be set to any of 

the following as seen in the figure below

o The code will run targeted the specified attack on 3 randomly selected labels. It will 

print out the area under the curve (AUC) of detection and the attack success rate at 5% 

false positive rate (FPR).

How to Run Attack and Detection



• The results of how the injected attacks performed against the Trapdoor-embedded model is referred to 

below

• Across all three attacks that were implemented, Trapdoor was able to successfully protect the original target labels 

before the adversarial training took place

• The attack success rate (ASR) respective to the three attacks that were injected on each dataset were able to inject 

their perturbations during the model re-training process, but ultimately failed to fool the Trapdoor-embedded model 

(some instances disproved this)

• The three attacks shall be modified by future researchers to perform better in fooling the Trapdoor defense mechanism

Results and Discussion



Explore New Adversarial Attacks:

Investigated three attacks not addressed in the founding paper.

Encourage injecting and testing new attacks for comprehensive evaluation.

Test Resilience of Trapdoor:

Assess how well Trapdoor withstands various adversarial attacks.

Evaluate its usability in everyday functions for improved architecture.

Integration with External Datasets:

Consider adapting Trapdoor to different image classification datasets.

Maintain consistent metrics to showcase scalability and adaptability.

Future Work
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