
Detecting and Preventing
Adversarial Attacks Using

Trapdoor Architecture

BenyamainYacoob, Andre Price, Ethan Scheys, and
Eyiara Oladipo

• Adversarial attacks work by injecting misleading data into training models, which can manipulate the output

and produce undesirable results

• Trapdoor architecture works by using honeypots as a defense mechanism to seek, detect, and stop

adversarial attacks

• The codebase currently only supports MNIST and CIFAR-10 dataset and six different attacks: Carlini Wagner,

Basic Iterative Method, Fast-Gradient Sign Method, Momentum Iterative Method, MadryEtAl, L-BFGS.

• We are looking to measure the effectiveness of the Trapdoor architecture on the MNIST and CIFAR-10

datasets with following adversarial attacks:

• Momentum Iterative Method (MIM)

• MadryEtAl

• L-BFGS

• Measures of success: Attack success rate (ASR), Perturbating size, and Confidence score

Note: We revised the attacks from our original presentation

Project Summary

Original source code: https://github.com/Shawn-Shan/trapdoor

Visualization of the datasets (MNIST and CIFAR respectively) can be seen below:

Context From the Original Paper

• Adversarial attacks work by injecting misleading data into training models, which can manipulate the

output and produce undesirable results

• In the testing stage, attacks can be white-box or black-box, targeting model parameters or using

substitute models.

• Defense mechanisms are available, including accounting for adversarial examples and adding random

perturbations to mitigate attacks.

Source: https://jwcn-
eurasipjournals.springeropen.com/articles/10.1186/s136
38-020-01775-5

Adversarial Attacks

Progress

- We were able to replicate the original environment of the paper

- We ran the three desired adversarial attacks - Momentum Iterative Method (MIM), MadryEtAl and L-BFGS
and receive data related to our measures of success

- We tuned the hyper-parameters to achieve better trapdoor success rates

- We evaluated the results from each of our attacks to gauge the effectiveness of the trapdoor architecture

Overview

- MIM – Description, Uses, and Results

- MadryEtAl– Description, Uses, and Results

- L-BFGS– Description, Uses, and Results

- Code structure

- Future works

Progress and Presentation Overview

MIM is an improvement on the FGSM attack

Summary: The FGSM attack aims to reduce the accuracy of a machine

learning model by adding carefully crafted perturbations to the input

data.

FGSM works by taking the gradient of the loss with respect to the

input data and then modifying the input data to maximize that loss. In

other words, it is adding perturbation to the input data in a way that

affects the model's output. FGSM attacks seem unchanged to the

human eyes, but can make the model misclassify the input.

Kurakin et al. [1] introduced the basic iterative method (BIM) by

repeating FGSM for n steps. BIM usually results in a higher attack

success rate than FGSM. [2]

Momentum Iterative Method (MIM)

The MIM was developed by the researchers sited in [3]

The researchers proposed a broad class of momentum iterative

gradient-based methods to generate adversarial examples, which

can fool white-box models as well as black-box models.

Momentum Iterative Method (MIM)

MIM Results

MNIST Dataset

Randomly Selected 3 Target Label

for Evaluations:

Target: 7
Trapdoor Success: 0.998

Attack Success: 0.0625

Detection Success Rate at 0.05 FPR: 0.75

Detection AUC score 0.937500

Target: 1
Trapdoor Success: 0.999

Attack Success: 0.0000

Target: 0
Trapdoor Success: 1.0

Attack Success: 0.0312

CIFAR-10 Dataset

Randomly Selected 3 Target Label

for Evaluations:

Target: 7
Trapdoor Success: 0.975

Attack Success: 1.000

Detection Success Rate at 0.05 FPR: 1.0

Detection AUC score 1.000

Target: 1
Trapdoor Success: 0.993

Attack Success: 1.000000

Detection Success Rate at 0.05 FPR: 1.0

Detection AUC score 1.000

Target: 0
Trapdoor Success: 0.986

Attack Success: 1.000

Detection Success Rate at 0.05 FPR: 1.0

Detection AUC score 1.000

• The MadryEtAI method is a method that focuses on training machine learning models against

adversarial attacks.

• This is done by generating adversarial examples and placing them within the input dataset.

• The model is then exposed to the adversarial examples and learns to become more resilient against

adversarial attacks.

MadryEtAl

MadryEtAl Results

MNIST Dataset

Randomly Selected 3 Target Label

for Evaluations:

Target: 7
Trapdoor Success: 0.998

Attack Success: 0.7812

Detection Success Rate at 0.05 FPR: 1.0

Detection AUC score 1.00000

Target: 1
Trapdoor Success: 0.999

Attack Success: 0.7812

Detection Success Rate at 0.05 FPR: 1.0

Detection AUC score 0.995600

Target: 0
Trapdoor Success: 1.0

Attack Success: 0.7188

Detection Success Rate at 0.05 FPR: 1.0

Detection AUC score 1.000000

CIFAR-10 Dataset

Randomly Selected 3 Target Label

for Evaluations:

Target: 7
Trapdoor Success: 0.975

Attack Success: 1.000

Detection Success Rate at 0.05 FPR: 1.0

Detection AUC score 1.000

Target: 1
Trapdoor Success: 0.993

Attack Success: 1.000000

Detection Success Rate at 0.05 FPR: 1.0

Detection AUC score 1.000

Target: 0
Trapdoor Success: 0.986

Attack Success: 1.000

Detection Success Rate at 0.05 FPR: 1.0

Detection AUC score 1.000

• The Limited-memory Broyden-Fletcher-Goldfarb-Shanno method is a non-linear gradient-based

numerical optimization algorithm designed to minimize the number of perturbations added to images.

• Its main purpose as an attack, is to generate adversarial examples. There are a few ways that L-BFGS

generates these adversarial examples. Some examples of these are seen in the following:

• Objective Function

• Perturbation

L-BFGS: Limited-memory BFGS

L-BFGS Results

MNIST Dataset

Randomly Selected 3 Target Label

for Evaluations:

Target: 7
Trapdoor Success: 0.998

Attack Success: 1.0000

Detection Success Rate at 0.05 FPR: 1.0

Detection AUC score 1.00000

Target: 1
Trapdoor Success: 0.999

Attack Success: 1.0000

Detection Success Rate at 0.05 FPR: 1.0

Detection AUC score 1.000

Target: 0
Trapdoor Success: 1.0

Attack Success: 1.00000

Detection Success Rate at 0.05 FPR: 1.0

Detection AUC score 0.999023

CIFAR-10 Dataset

Randomly Selected 3 Target Label

for Evaluations:

Target: 7
Trapdoor Success: 0.975

Attack Success: 1.000

Detection Success Rate at 0.05 FPR: 1.0

Detection AUC score 0.992676

Target: 1
Trapdoor Success: 0.993

Attack Success: 1.000000

Detection Success Rate at 0.05 FPR: 0.96875

Detection AUC score 0.977539

Target: 0
Trapdoor Success: 0.986

Attack Success: 1.000

Detection Success Rate at 0.05 FPR: 0.96875

Detection AUC score 1.000

• The code is tested on Python 3.6.8

• The list of packages and their versions to replicate the project within your own environment can be seen

below

• To replicate your own environment, create a virtual environment through Python's documentation or

download Anaconda

Dependencies

• To train a trapdoor model, type the following in the Terminal

o "python inject_trapdoor.py --dataset mnist"

o "python inject_trapdoor.py --dataset cifar"

o A results file shall be outputted which holds the configurations of creating both the

models, as well as the extracted model without the additional information of the

configurations

The source code can be found here: https://github.com/Benyamain/trapdoor-extended

Code Implementation and How to Train a Trapdoor Model

• To run attack and detection, type the following in the Terminal

o "python eval_detection.py --dataset mnist --attack bim"

o "python eval_detection.py --dataset cifar --attack bim"

o The selection for what attack you want to use on the specified dataset can be set to any of

the following as seen in the figure below

o The code will run targeted the specified attack on 3 randomly selected labels. It will

print out the area under the curve (AUC) of detection and the attack success rate at 5%

false positive rate (FPR).

How to Run Attack and Detection

• The results of how the injected attacks performed against the Trapdoor-embedded model is referred to

below

• Across all three attacks that were implemented, Trapdoor was able to successfully protect the original target labels

before the adversarial training took place

• The attack success rate (ASR) respective to the three attacks that were injected on each dataset were able to inject

their perturbations during the model re-training process, but ultimately failed to fool the Trapdoor-embedded model

(some instances disproved this)

• The three attacks shall be modified by future researchers to perform better in fooling the Trapdoor defense mechanism

Results and Discussion

Explore New Adversarial Attacks:

Investigated three attacks not addressed in the founding paper.

Encourage injecting and testing new attacks for comprehensive evaluation.

Test Resilience of Trapdoor:

Assess how well Trapdoor withstands various adversarial attacks.

Evaluate its usability in everyday functions for improved architecture.

Integration with External Datasets:

Consider adapting Trapdoor to different image classification datasets.

Maintain consistent metrics to showcase scalability and adaptability.

Future Work

[1]Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial examples in the physical world, In: Proceedings of

International Conference on Learning Representations (ICLR), (2017)

[2]Ryu, G., Choi, D. Detection of adversarial attacks based on differences in image entropy. Int. J. Inf. Secur.

(2023). https://doi.org/10.1007/s10207-023-00735-6

[3]Y. Dong et al., “Boosting Adversarial Attacks with Momentum.” Accessed: Nov. 29, 2023. [Online].

Available:

https://openaccess.thecvf.com/content_cvpr_2018/papers/Dong_Boosting_Adversarial_Attacks_CVPR_20

18_paper.pdf

[4]X. Yuan, P. He, Q. Zile, X. Li, “Adversarial Examples: Attacks and Defenses For Deep Learning”. Accessed:

Nov. 29, 2023. [Online]. Available: https://arxiv.org/pdf/1712.07107.pdf

Works Cited

